Jupiter

2007 Schools Wikipedia Selection. Related subjects: The Planets

Jupiter Astronomical symbol of Jupiter
Click for full caption.
Click image for description
Orbital characteristics ( Epoch J2000)
Semi-major axis 778,412,027 km
5.203 363 01 AU
Orbital circumference 4.888 T m
32.675 AU
Eccentricity 0.048 392 66
Perihelion 740,742,598 km
4.951 558 43 AU
Aphelion 816,081,455 km
5.455 167 59 AU
Orbital period 4333.2867 d
(11.86 a)
Synodic period 398.88 d
Avg. Orbital Speed 13.056 km/s
Max. Orbital Speed 13.712 km/s
Min. Orbital Speed 12.446 km/s
Inclination 1.305 30°
(6.09° to Sun's equator)
Longitude of the
ascending node
100.556 15°
Argument of the
perihelion
274.197 70°
Number of satellites 63
Physical characteristics
Equatorial diameter 142,984 km
(11.209 Earths)
Polar diameter 133,709 km
(10.517 Earths)
Oblateness 0.064 87
Surface area 6.14×1010 km2
(120.5 Earths)
Volume 1.431×1015 km3
(1321.3 Earths)
Mass 1.899×1027 kg
(317.8 Earths)
Mean density 1.326 g/cm3
Equatorial gravity 23.12 m/s2
(2.358 gee)
Escape velocity 59.54 km/s
Rotation period 0.413 538 021 d
(9 h 55 min 29.685 s)
Rotation velocity 12.6 km/s = 45,300 km/h
(at the equator)
Axial tilt 3.13°
Right ascension
of North pole
268.05° (17 h 52 min 12 s)
Declination 64.49°
Albedo 0.52
Surface temp.
min mean max
110 K 152 K N/A K
Adjective Jovian
Atmospheric characteristics
Atmospheric pressure 70 kPa
Hydrogen ~86%
Helium ~14%
Methane 0.1%
Water vapor 0.1%
Ammonia 0.02%
Ethane 0.0002%
Phosphine 0.0001%
Hydrogen sulfide <0.00010%

Jupiter ( IPA: /dʒu'pItɺ/) is the fifth planet from the Sun and the largest within the solar system. Jupiter and the other gas giantsSaturn, Uranus, and Neptune—are sometimes referred to as " Jovian planets".

Overview

Jupiter is usually the fourth brightest object in the sky (after the Sun, the Moon and Venus); however at times Mars appears brighter than Jupiter.

Approximate size comparison of Earth and Jupiter, including the Great Red Spot
Enlarge
Approximate size comparison of Earth and Jupiter, including the Great Red Spot

Jupiter is 2.5 times more massive than all the other planets combined, so massive that its barycenter with the Sun actually lies above the Sun's surface (1.068 solar radii from the Sun's centre). It is 318 times more massive than Earth, with a diameter 11 times that of Earth, and its volume is 1300 times as great as that of Earth. Quite naturally, Jupiter's gravitational influence has dominated the evolution of the solar system: some have described the solar system as consisting of the Sun, Jupiter, and assorted debris. Most planets' orbits lie closer to Jupiter's orbital plane than the Sun's equatorial plane (Mercury is the only planet which is closer to the Sun's equator in orbital tilt), the majority of short-period comets belong to Jupiter's family (a result due to both Jupiter's mass and its relative speed), the Kirkwood gaps in the asteroid belt are mostly due to Jupiter, and the planet may have been responsible for the Late Heavy Bombardment of the inner solar system's history. Jupiter has been called the solar system's vacuum cleaner, due to its immense gravity well.

As impressive as Jupiter's mass is, extrasolar planets have been discovered with much greater masses. There is no clear-cut definition of what distinguishes a large planet such as Jupiter from a brown dwarf star, although the latter possesses rather specific spectral lines. Currently, if an object of solar metallicity is 13 Jupiter masses or above, large enough to burn deuterium, it is considered a brown dwarf; below that mass (and orbiting a star or stellar remnant), it is a planet. Jupiter is thought to have about as large a diameter as a planet of its composition can; adding extra mass would result in further gravitational compression, in theory leading to stellar ignition. This has led some astronomers to term it a "failed star" -- although Jupiter would need to be about seventy-five times as massive to become a star, the smallest red dwarf is only about 30% larger than Jupiter. In light of this, it is also interesting to note that it radiates more heat than it receives from the Sun. This additional heat radiation is produced by the Kelvin-Helmholtz mechanism. As another symptom of this process, the planet shrinks at the rate of a few millimeters each year. When it was younger and hotter, Jupiter was much larger than it is today, though previously Saturn would have been even bigger than Jupiter due to its lower mass: Saturn has a much weaker gravitational pull and with more heat, both planets would have been more bloated (and because of Saturn's lower core mass, this effect would have been greater). In general, the more massive the core, the smaller the planet in size.

Aurora borealis on Jupiter.
Enlarge
Aurora borealis on Jupiter.

Jupiter also has the fastest rotation rate of any planet within the solar system, making a complete rotation on its axis in slightly less than ten hours, which results in an equatorial bulge easily seen through an Earth-based amateur telescope. Jupiter is perpetually covered with a layer of clouds, composed of ammonia crystals and possibly ammonium hydrosulphide, and it may not have any solid surface in that the density may simply increase gradually as you move towards the core. Its best known feature is the Great Red Spot, a storm larger than Earth which was likely first observed by Giovanni Domenico Cassini and Robert Hooke four centuries ago. Indeed, mathematical models suggest that the storm is stable and may be a permanent feature of the planet. In 2000, three small spots merged to form a larger spot named Oval BA, which later acquired a red hue very similar to that of the Great Red Spot.

Historical observations

The planet Jupiter has been known since ancient times and is visible to the naked eye in the night sky. The Romans named the planet after the Roman god Jupiter (also called Jove). The astronomical symbol for the planet is a stylized representation of the god's lightning bolt. ♃ is found at Unicode position U+2643.

The Chinese, Korean, Japanese, and Vietnamese refer to the planet as the wood star, 木星, based on the Chinese Five Elements. In Vedic Astrology, Hindu astrologers refer to Jupiter as Brihaspati, or "Guru" which means the "Big One". In Hindi, Thursday is referred to as Guruvaar (day of Jupiter). In the English language Thursday is rendered as Thor's day, with Thor being identified with the Roman god Jupiter.

In 1610, Galileo Galilei discovered the four largest moons of Jupiter, Io, Europa, Ganymede and Callisto (now known as the Galilean moons) using a telescope, the first observation of moons other than Earth's. This was also the first discovery of a celestial motion not apparently centered on the Earth. It was a major point in favour of Copernicus' heliocentric theory of the motions of the planets; Galileo's outspoken support of the Copernican theory placed him under the threat of the Inquisition.

In 1892, E. E. Barnard observed a fifth satellite of Jupiter with the 36-inch refractor at Lick Observatory in California. The discovery, a testament to his extraordinary eyesight, made him quickly famous. The moon was later named Amalthea.

Physical characteristics

Planetary composition

Jupiter is composed of a relatively small rocky core, surrounded by metallic hydrogen, with further layers of liquid hydrogen and gaseous hydrogen. There is no clear boundary or surface between these different phases of hydrogen; the conditions blend smoothly from gas to liquid as one descends.

Atmosphere

False-color detail of Jupiter's atmosphere, imaged by Voyager 1, showing the Great Red Spot and a passing white oval
Enlarge
False-colour detail of Jupiter's atmosphere, imaged by Voyager 1, showing the Great Red Spot and a passing white oval

Jupiter's atmosphere is composed of ~90% hydrogen and ~10% helium by number of atoms. The atmosphere is ~75%/24% by mass; with ~1% of the mass accounted for by other substances - the interior contains denser materials such that the distribution is ~71%/24%/5%. The atmosphere contains trace amounts of methane, water vapor, ammonia, and "rock". There are also traces of carbon, ethane, hydrogen sulphide, neon, oxygen, phosphine, and sulphur. The outermost layer of the atmosphere contains crystals of frozen ammonia. Through IR and UV measurements benzene (at a relative mixing ratio of 2x10-9 to hydrogen) and other hydrocarbons have also been found.

This atmospheric composition is very close to the composition of the solar nebula. Saturn has a similar composition, but Uranus and Neptune have much less hydrogen and helium.

Jupiter's upper atmosphere undergoes differential rotation, an effect first noticed by Giovanni Cassini ( 1690). The rotation of Jupiter's polar atmosphere is ~5 minutes longer than that of the equatorial atmosphere. In addition, bands of clouds of different latitudes, known as tropical regions flow in opposing directions on the prevailing winds. The interactions of these conflicting circulation patterns cause storms and turbulence. Wind speeds of 600 km/h are not uncommon.

The only spacecraft to have descended into Jupiter's atmosphere to take scientific measurements is the Galileo probe (see Galileo mission). It sent an atmospheric probe into Jupiter upon arrival in 1995, then itself entered Jupiter's atmosphere and burned up in 2003.

The Great Red Spot

The Great Red Spot as seen from Voyager 1 in 1979.
Enlarge
The Great Red Spot as seen from Voyager 1 in 1979.
Color animation of Jupiter's cloud motion.
Enlarge
Colour animation of Jupiter's cloud motion.
An animation of the Great Red Spot
Enlarge
An animation of the Great Red Spot
Image of Jupiter by Pioneer 10 in 1974. The Great Red Spot appears more prominent here than in the Voyager images because of its location in a lighter colored band of clouds.
Enlarge
Image of Jupiter by Pioneer 10 in 1974. The Great Red Spot appears more prominent here than in the Voyager images because of its location in a lighter colored band of clouds.

The Great Red Spot is a persistent anticyclonic storm on the planet Jupiter, 22° south of the equator, which has lasted at least 340 years. The storm is large enough to be visible through Earth-based telescopes. It was probably first observed by Giovanni Domenico Cassini, who described it around 1665.

This dramatic view of Jupiter's Great Red Spot and its surroundings was obtained by Voyager 1 on February 25, 1979, when the spacecraft was 9.2 million km (5.7 million miles) from Jupiter. Cloud details as small as 160 km (100 miles) across can be seen here. The colorful, wavy cloud pattern to the left of the Red Spot is a region of extraordinarily complex and variable wave motion. To give a sense of Jupiter's scale, the white oval storm directly below the Great Red Spot is approximately the same diameter as Earth.

The oval object rotates counterclockwise, with a period of about 6 days. The Great Red Spot's dimensions are 24–40,000 km × 12–14,000 km. It is large enough to contain two or three planets of Earth size. The cloudtops of this storm are about 8 km above the surrounding cloudtops.

Storms such as this are not uncommon within the turbulent atmospheres of gas giants. Jupiter also has white ovals and brown ovals, which are lesser unnamed storms. White ovals tend to consist of relatively cool clouds within the upper atmosphere. Brown ovals are warmer and located within the "normal cloud layer". Such storms can last hours or centuries.

Before the Voyager missions, astronomers were highly uncertain of its nature. Many believed it to be a solid or liquid feature on Jupiter's surface.

Planetary rings

Enlarge

Jupiter has a faint planetary ring system composed of smoke-like dust particles knocked from its moons by energetic meteor impacts. The innermost doughnut-shaped ring, called the halo, is almost as thick (20,000km) as it is wide (22,800km). This is followed by the thinnest and brightest main ring, which is made of dust from the satellites Adrastea and Metis. Metis orbits within its fluid Roche limit with Jupiter, and objects not rigidly attached to it may freely fall away from it and into Jupiter's gravitational field. Two wide gossamer rings encircle the main ring, originating from Thebe and Amalthea. Finally, there is a distant and very faint outer ring circling Jupiter backwards—retrograde of its spin. It is not known for certain where the material for this outer ring comes from, but it may be captured interplanetary dust.

Magnetosphere

Jupiter has a very large and powerful magnetosphere. In fact, if one could see Jupiter's magnetic field from Earth, it would appear five times as large as the full moon in the sky despite being so much farther away. The magnetic field is generated by eddy currents in Jupiter's metallic hydrogen core. This magnetic field collects a large flux of particle radiation in Jupiter's radiation belts, as well as producing a dramatic gas torus and flux tube associated with Io(one of Jupiter's moon). Jupiter's magnetosphere is the largest planetary structure in the solar system.

The Pioneer probes confirmed that Jupiter's enormous magnetic field is 10 times stronger than Earth's and contains 20,000 times as much energy. The sensitive instruments aboard found that the Jovian magnetic field's "north" magnetic pole is at the planet’s geographic south pole, with the axis of the magnetic field tilted 11 degrees from the Jovian rotation axis and offset from the centre of Jupiter in a manner similar to the axis of the Earth's field. The Pioneers measured the bow shock of the Jovian magnetosphere to the width of 26 million kilometers (16 million miles), with the magnetic tail extending beyond Saturn’s orbit.

The data showed that the magnetic field fluctuates rapidly in size on the sunward side of Jupiter because of pressure variations in the solar wind, an effect studied in further detail by the two Voyager spacecraft. It was also discovered that streams of high-energy atomic particles are ejected from the Jovian magnetosphere and travel as far as the orbit of the Earth. Energetic protons were found and measured in the Jovian radiation belt and electric currents were detected flowing between Jupiter and some of its moons, particularly Io.

Exploration of Jupiter

A number of probes have visited Jupiter.

Pioneer flyby missions

Pioneer 10 flew past Jupiter in December of 1973, followed by Pioneer 11 exactly one year later. Pioneer 10 obtained the first ever close up images of Jupiter and the Galilean moons, studied its atmosphere, detected its magnetic field, observed its radiation belts and found that Jupiter is mainly liquid.

Voyager flyby missions

Voyager 1 took this photo of the planet Jupiter on January 24, 1979 while still more than 25 million miles (40 million kilometres) away. Click image for full caption.
Enlarge
Voyager 1 took this photo of the planet Jupiter on January 24, 1979 while still more than 25 million miles (40 million kilometres) away. Click image for full caption.

Voyager 1 flew by in March 1979 followed by Voyager 2 in July of the same year. The Voyagers vastly improved the understanding of the Galilean moons and discovered Jupiter's rings. They also took the first close up images of the planet's atmosphere.

Ulysses flyby mission

In February 1992, Ulysses solar probe performed a flyby of Jupiter at a distance of 450,000 km (6.3 Jovian radii). The flyby was required to attain a polar orbit around the Sun. The probe conducted studies on Jupiter's magnetosphere. Since there are no cameras onboard the probe, no images were taken. In February 2004, the probe came again in the vicinity of Jupiter. This time the distance was much greater, about 240 million km.

Galileo mission

So far the only spacecraft to orbit Jupiter is the Galileo orbiter, which went into orbit around Jupiter on December 7, 1995. It orbited the planet for over seven years and conducted multiple flybys of all of the Galilean moons and Amalthea. The spacecraft also witnessed the impact of Comet Shoemaker-Levy 9 into Jupiter as it approached the planet in 1994, giving a unique vantage point for this spectacular event. However, while the information gained about the Jovian system from the Galileo mission was extensive in its own right, its originally-designed capacity was limited by the failed deployment of its high-gain radio transmitting antenna.

Jupiter as seen by the space probe Cassini. This is the most detailed global color portrait of Jupiter ever assembled.
Enlarge
Jupiter as seen by the space probe Cassini. This is the most detailed global colour portrait of Jupiter ever assembled.

An atmospheric probe was released from the spacecraft in July 1995. The probe entered the planet's atmosphere on December 7, 1995. It parachuted through 150 km of the atmosphere, collecting data for 57.6 minutes, before being crushed by the extreme pressure to which it was subjected. It would have melted and vaporized shortly thereafter. The Galileo orbiter itself experienced a more rapid version of the same fate when it was deliberately steered into the planet on September 21, 2003 at a speed of over 50 km/s, in order to avoid any possibility of it crashing into and possibly contaminating Europa, one of the Jovian moons.

Cassini flyby mission

In 2000, the Cassini probe, en route to Saturn, flew by Jupiter and provided some of the highest-resolution images ever made of the planet. On December 19, 2000, the Cassini spacecraft, captured a very low resolution image of the moon Himalia, but it was too distant to show any surface details.

New Horizons flyby mission

The New Horizons probe and its Atlas V launcher lifted off from Pad 41 at Cape Canaveral Air Force Station, Florida, directly south of Space Shuttle Launch Complex 39, at 2:00 p.m. EST (1900 UTC) on January 19, 2006. New Horizons passed Lunar orbit before midnight EST on the same day, and is scheduled to reach Jupiter in February 2007. It will pass through the Jupiter system at 21 km/s (47,000 mph), with closest approach to Jupiter occurring at approximately 06:00 UTC February 28, 2007.

The flyby will come within about 32 Jovian radii (3 Gm) of Jupiter and will be the centre of a 4-month intensive observation campaign. New Horizons also has instruments built twenty years after Galileo's - particularly Galileo's cameras, which were evolved versions of Voyager cameras which, in turn, were evolved Mariner cameras. Because of the much shorter distance from Jupiter to Earth, the communications link can transmit multiple loadings of the memory buffer. The mission will actually return more data from Jupiter than Pluto. Imaging of Jupiter began on September 4, 2006.

Future probes

NASA is planning a mission to study Jupiter in detail from a polar orbit. Named Juno, the spacecraft is planned to launch by 2010.

Because of the possibility of a liquid ocean on Jupiter's moon Europa, there has been great interest to study the icy moons in detail. A mission proposed by NASA was dedicated to study them. The JIMO (Jupiter Icy Moons Orbiter) was expected to be launched sometime after 2012. However, the mission was deemed too ambitious and its funding was cancelled.

Natural satellites

Jupiter's 4 Galilean moons, in a composite image comparing their sizes and the size of Jupiter (Great Red Spot visible). From the top they are: Callisto, Ganymede, Europa and Io.
Enlarge
Jupiter's 4 Galilean moons, in a composite image comparing their sizes and the size of Jupiter (Great Red Spot visible). From the top they are: Callisto, Ganymede, Europa and Io.

Jupiter has at least 63 moons. For a complete listing of these moons, please see Jupiter's natural satellites. For a timeline of their discovery dates, see Timeline of discovery of Solar System planets and their natural satellites.

The four large moons, known as the " Galilean moons", are Io, Europa, Ganymede and Callisto.

Galilean moons

The orbits of Io, Europa, and Ganymede, the largest moon in the solar system, form a pattern known as a Laplace resonance; for every four orbits that Io makes around Jupiter, Europa makes exactly two orbits and Ganymede makes exactly one. This resonance causes the gravitational effects of the three moons to distort their orbits into elliptical shapes, since each moon receives an extra tug from its neighbors at the same point in every orbit it makes.

A picture of Jupiter and its moon Io taken by Hubble. The black spot is Io's shadow.
Enlarge
A picture of Jupiter and its moon Io taken by Hubble. The black spot is Io's shadow.

The tidal force from Jupiter, on the other hand, works to circularize their orbits. This constant tug of war causes regular flexing of the three moons' shapes, Jupiter's gravity stretches the moons more strongly during the portion of their orbits that are closest to it and allowing them to spring back to more spherical shapes when they're farther away. This flexing causes tidal heating of the three moons' cores. This is seen most dramatically in Io's extraordinary volcanic activity, and to a somewhat less dramatic extent in the geologically young surface of Europa indicating recent resurfacing.

The Galilean moons, compared to Earth's moon Luna
Name

( Pronunciation key)

Diameter
(km)
Mass
(kg)
Orbital radius (km) Orbital period (days)
Io eye'-oe
ˈaɪəʊ
3643
(105% Luna)
8.9×1022
(120% Luna)
421 700
(110% Luna)
1.77
(6.5% Luna)
Europa ew-roe'-pə
jʊˈrəʊpə
3122
(90% Luna)
4.8×1022
(65% Luna)
671 034
(175% Luna)
3.55
(13% Luna)
Ganymede gan'-ə-meed
ˈgænəmid
5262
(150% Luna)
14.8×1022
(200% Luna)
1 070 412
(280% Luna)
7.15
(26% Luna)
Callisto kə-lis'-toe
kəˈlɪstəʊ
4821
(140% Luna)
10.8×1022
(150% Luna)
1 882 709
(490% Luna)
16.69
(61% Luna)

Classification of Jupiter's moons

Before the discoveries of the Voyager missions, Jupiter's moons were arranged neatly into four groups of four. Since then, the large number of new small outer moons has complicated this picture. There are now thought to be six main groups, although some are more distinct than others. A basic division is between the eight inner regular moons with nearly circular orbits near the plane of Jupiter's equator, which are believed to have formed with Jupiter, and an unknown number of small irregular moons, with elliptical and inclined orbits, which are believed to be captured asteroids or fragments of captured asteroids.

Europa, one of Jupiter's many moons.
Enlarge
Europa, one of Jupiter's many moons.
  1. Regular moons
    1. The inner group of four small moons all have diameters of less than 200 km, orbit at radii less than 200,000 km, and have orbital inclinations of less than half a degree..
    2. The four Galilean moons, discovered by Galileo Galilei and by Simon Marius in parallel, orbit between 400,000 and 2,000,000 km, and include some of the largest moons in the solar system.
  2. Irregular moons
    1. Themisto is in a group of its own, orbiting halfway between the Galilean moons and the next group.
    2. The Himalia group is a tightly clustered group of moons with orbits around 11,000,000-12,000,000 km from Jupiter.
    3. Carpo is another isolated case; at the inner edge of the Ananke group, it revolves in the direct sense.
    4. The Ananke group is a group with rather indistinct borders, averaging 21,276,000 km from Jupiter with an average inclination of 149 degrees.
    5. The Carme group is a fairly distinct group that averages 23,404,000 km from Jupiter with an average inclination of 165 degrees.
    6. The Pasiphaë group is a dispersed and only vaguely distinct group that covers all the outermost moons.

It is thought that the groups of outer moons may each have a common origin, perhaps as a larger moon or captured body that broke up.

Life on Jupiter

It is considered highly unlikely that there is any Earth-like life on Jupiter, as there is little water in the atmosphere and any possible solid surface deep within Jupiter would be under extraordinary pressures. However, in 1976, before the Voyager missions, Carl Sagan hypothesized (with Edwin Ernest Salpeter) that ammonia-based life could evolve in Jupiter's upper atmosphere. Sagan and Salpeter based this hypothesis on the ecology of terrestrial seas which have simple photosynthetic plankton at the top level, fish at lower levels feeding on these creatures, and marine predators which hunt the fish. The Jovian equivalents Sagan and Salpeter hypothesized were "sinkers", "floaters", and "hunters". The "sinkers" would be plankton-like organisms which fall through the atmosphere, existing just long enough that they can reproduce in the time they are kept afloat by convection. The "floaters" would be giant bags of gas functioning along the lines of hot air balloons, using their own metabolism (feeding off sunlight and free molecules) to keep their gas warm. The "hunters" would be almost squid-like creatures, using jets of gas to propel themselves into "floaters" and consume them.

This diagram shows the Trojan Asteroids in Jupiter's orbit, as well as the main asteroid belt
Enlarge
This diagram shows the Trojan Asteroids in Jupiter's orbit, as well as the main asteroid belt

Trojan asteroids

In addition to its moons, Jupiter's gravitational field controls numerous asteroids which have settled into the regions of the Lagrangian points preceding and following Jupiter in its orbit around the sun. These are known as the Trojan asteroids, and are divided into Greek and Trojan "camps" to commemorate the Iliad. The first of these, 588 Achilles, was discovered by Max Wolf in 1906; since then hundreds more have been discovered. The largest is 624 Hektor.

Cometary impact

 Aftermath of impact of a cometary fragment.  The dark scars visible on the cloudtops were larger than Earth itself.
Enlarge
Aftermath of impact of a cometary fragment. The dark scars visible on the cloudtops were larger than Earth itself.

During the period July 16 to July 22, 1994, over twenty fragments from the comet Shoemaker-Levy 9 hit Jupiter's southern hemisphere, providing the first direct observation of a collision between two solar system objects. It is thought that due to Jupiter's large mass and location near the inner solar system it receives the most frequent comet impacts of the solar system's planets.

Retrieved from " http://en.wikipedia.org/wiki/Jupiter"