Animal

2007 Schools Wikipedia Selection. Related subjects: General Biology

iAnimal
Fossil range: Late Neoproterozoic - Recent
Mammals, Birds, Reptiles and others.
Mammals, Birds, Reptiles and others.
Scientific classification
Domain: Eukaryota
Kingdom: Animalia
Linnaeus, 1758
Phyla
  • Placozoa (trichoplax)
  • Orthonectida (orthonectids)
  • Rhombozoa (dicyemids)

Subregnum Parazoa

  • Porifera (sponges)

Subregnum Eumetazoa

  • Radiata (unranked) ( radial symmetry)
    • Ctenophora (comb jellies)
    • Cnidaria (coral, jellyfish, anemones)
  • Bilateria (unranked) ( bilateral symmetry)
    • Acoelomorpha (basal)
    • Myxozoa (slime animals)
    • Chaetognatha (arrow worms)
    • Superphylum Deuterostomia (blastopore becomes anus)
      • Chordata (vertebrates, etc.)
      • Hemichordata (acorn worms)
      • Echinodermata (starfish, urchins)
    • Superphylum Ecdysozoa (shed exoskeleton)
      • Kinorhyncha (mud dragons)
      • Loricifera
      • Priapulida (priapulid worms)
      • Nematoda (roundworms)
      • Nematomorpha (horsehair worms)
      • Onychophora (velvet worms)
      • Tardigrada (water bears)
      • Arthropoda (insects, etc.)
    • Superphylum Platyzoa
      • Platyhelminthes (flatworms)
      • Gastrotricha (gastrotrichs)
      • Rotifera (rotifers)
      • Acanthocephala (acanthocephalans)
      • Gnathostomulida (jaw worms)
      • Micrognathozoa (limnognathia)
      • Cycliophora (pandora)
    • Superphylum Lophotrochozoa (trochophore larvae / lophophores)
      • Sipuncula (peanut worms)
      • Nemertea (ribbon worms)
      • Phoronida (horseshoe worms)
      • Bryozoa (moss animals)
      • Entoprocta (goblet worms)
      • Brachiopoda (brachipods)
      • Mollusca (molluscs)
      • Annelida (segmented worms)

Animals are a major group of organisms, classified as the kingdom Animalia or Meta­zoa. In general they are multi­cellular, capable of locomotion, responsive to their environment, and feed by consuming other organisms. Their body plan becomes fixed as they develop, usually early on in their development as embryos, although some undergo a process of metamorphosis later on. More specifically, animals can be defined as heterotrophic eukaryotes without cell walls, which move through a blastula stage in early development.

The word "animal" comes from the Latin word animal, of which animalia is the plural, and is derived from anima, meaning "vital breath" or " soul". A common usage of the term may be limited to so-called lower animals (as in "brutes" or "beasts") and refer to humans only in a contemptuous or humourous context .

Characteristics

Animals have several characteristics that set them apart from other living things. Animals are eukaryotic and usually multicellular (although see Myxozoa), which separates them from bacteria and most protists. They are heterotrophic, generally digesting food in an internal chamber, which distinguishes them from plants and algae. They are also distinguished from plants, algae, and fungi because their cells lack cell walls.

Structure

With a few exceptions, most notably the sponges (Phylum Porifera), animals have bodies differen­tiated into separate tissues. These include muscles, which are able to contract and control locomotion, and a nervous system, which sends and processes signals. There is also typically an internal digestive chamber, with one or two openings. Animals with this sort of organization are called metazoans, or eumetazoans when the former is used for animals in general.

All animals have eukaryotic cells, surrounded by a characteristic extracellular matrix composed of collagen and elastic glycoproteins. This may be calcified to form structures like shells, bones, and spicules. During development it forms a relatively flexible framework upon which cells can move about and be reorganized, making complex structures possible. In contrast, other multicellular organisms like plants and fungi have cells held in place by cell walls, and so develop by progressive growth. Also, unique to animal cells are the following intercellular junctions: tight junctions, gap junctions, and desmosomes.

Reproduction and development

Nearly all animals undergo some form of sexual reproduction. Adults are diploid or polyploid. They have a few specialized reproductive cells, which undergo meiosis to produce smaller motile spermatozoa or larger non-motile ova. These fuse to form zygotes, which develop into new individuals.

Many animals are also capable of asexual reproduction. This may take place through parthenogenesis, where fertile eggs are produced without mating, or in some cases through fragmentation.

A zygote initially develops into a hollow sphere, called a blastula, which undergoes rearrangement and differentiation. In sponges, blastula larvae swim to a new location and develop into a new sponge. In most other groups, the blastula undergoes more complicated rearrangement. It first invaginates to form a gastrula with a digestive chamber, and two separate germ layers - an external ectoderm and an internal endoderm. In most cases, a mesoderm also develops between them. These germ layers then differentiate to form tissues and organs.

Nutrition

Animals are consumers that derive their energy from producers, who in turn derive their energy from a number of sources.

Most animals grow by indirectly using the energy of sunlight. Plants use this energy to convert carbon dioxide (CO2) into simple sugars using a process known as photosynthesis. Starting with the (CO2) molecules and water (H2O), photosynthesis converts the energy of sunlight into chemical energy stored in the bonds of glucose (C6H12O6) and releases oxygen (O2). These sugars are then used as the building blocks which allow the plant to grow. When animals eat these plants (or eat other creatures which have eaten plants), the sugars produced by the plant are used by the animal. They are either used directly to help the animal grow, or broken down, releasing stored solar energy, and giving the animal the energy required for motion. This process is known as glycolysis.

Many animals who live close to hydrothermal vents and cold seeps on the ocean floor are not dependent on the energy of sunlight for their nourishment. Instead, chemosynthetic archaea and eubacteria form the base of the food chain. These creatures use the energy from compounds seeping from the vents to power the manufacture of sugars and other molecules, and animals live by either eating those microbes or harboring them within their tissues.

Origin and fossil record

Animals are generally considered to have evolved from flagellate protozoa. Their closest living relatives are the choanoflagellates, collared flagellates that have the same structure as certain sponge cells do. Molecular studies place them in a supergroup called the opisthokonts, which also include the fungi and a few small parasitic protists. The name comes from the posterior location of the flagellum in motile cells, such as most animal spermatozoa, whereas other eukaryotes tend to have anterior flagella.

The first fossils that might represent animals appear towards the end of the Precambrian, around 575 million years ago, and are known as the Ediacaran or Vendian biota. These are difficult to relate to later fossils, however. Some may represent precursors of modern phyla, but they may be separate groups, and it is possible they are not really animals at all. Aside from them, most known animal phyla make a more or less simultaneous appearance during the Cambrian period, about 542 million years ago. It is still disputed whether this event, called the Cambrian explosion, represents a rapid divergence between different groups or a change in conditions that made fossilization possible.

Groups of animals

Orange elephant ear sponge, Agelas clathrodes, in foreground. Two corals in the background: a sea fan, Iciligorgia schrammi, and a sea rod, Plexaurella nutans.
Enlarge
Orange elephant ear sponge, Agelas clathrodes, in foreground. Two corals in the background: a sea fan, Iciligorgia schrammi, and a sea rod, Plexaurella nutans.
Magellanic Penguin, Spheniscus magellanicus
Enlarge
Magellanic Penguin, Spheniscus magellanicus

The sponges ( Porifera) diverged from other animals early. As mentioned, they lack the complex organization found in most other phyla. Their cells are differentiated, but not organized into distinct tissues. Sponges are sessile and typically feed by drawing in water through pores. The extinct archaeocyathids, which have fused skeletons, may represent sponges or a separate phylum.

Among the remaining phyla, known collectively as eumetazoans, two are radially symmetric and have digestive chambers with a single opening, which serves as both the mouth and the anus. These are the Cnidaria, which include sea anemones, corals, and jellyfish, and the Ctenophora or comb jellies. Both have distinct tissues, but they are not organized into organs. There are only two main germ layers, the ectoderm and endoderm, with only scattered cells between them. As such, these animals are sometimes called diploblastic. The tiny phylum Placozoa is similar, but individuals do not have a permanent digestive chamber.

The remaining animals form a monophyletic group called the Bilateria. For the most part, they are bilaterally symmetric, and often have a specialized head with feeding and sensory organs. The body is triploblastic, i.e. all three germ layers are well-developed, and tissues form distinct organs. The digestive chamber has two openings, a mouth and an anus, and there is also an internal body cavity called a coelom or pseudocoelom. There are exceptions to each of these characteristics, however. For instance adult echinoderms are radially symmetric, although this radial symmetry is superimposed upon the bilaterial symmetry of the embryo. Another exception is that certain parasitic worms have extremely simplified body structures.

Genetic studies have considerably changed our understanding of the relationships within the Bilateria. Most appear to belong to four major lineages:

  1. Deuterostomes
  2. Ecdysozoa
  3. Platyzoa
  4. Lophotrochozoa

In addition to these, there are a few small groups of bilaterians with relatively similar structure that appear to have diverged before these major groups. These include the Acoelomorpha, Rhombozoa, and Orthonectida. The Myxozoa, single-celled parasites that were originally considered Protozoa, are now believed to have developed from the Bilateria as well.

Deuterostomes

Deuterostomes differ from the other Bilateria, called protostomes, in several ways. In both cases there is a complete digestive tract. However, in protostomes, the initial opening to the archenteron (the blastopore) develops into the mouth, and an anus forms separately. In deuterostomes this is reversed. In most protostomes cells simply fill in the interior of the gastrula to form the mesoderm, called schizocoelous development, but in deuterostomes it forms through invagination of the endoderm, called enterocoelic pouching. Deuterostomes also have a dorsal, rather than a ventral, nerve chord and their embryos undergo different cleavage.

All this suggests the deuterostomes and protostomes are separate, monophyletic lineages. The main phyla of deuterostomes are the Echinodermata and Chordata. Echinoderms radially symmetric and exclusively marine, such as sea stars, sea urchins, and sea cucumbers. The most prevalent chordates are vertebrates, animals with backbones, which include fish, amphibians, reptiles, birds, and mammals.

In addition to these, the deuterostomes also include the Hemichordata or acorn worms. The important fossil graptolites, although they are extinct today, may belong to this group.

The Chaetognatha or arrow worms share some embryonic features with deuterostomes, but may actually be closer to the protostomes.

The remaining three bilaterian groups are protostomes.

Ecdysozoa

Yellow-winged Darter, Sympetrum flaveolum
Enlarge
Yellow-winged Darter, Sympetrum flaveolum

The Ecdysozoa are protostomes, named after the common trait of growth by moulting or ecdysis. The largest animal phylum belongs here, the Arthropoda, including insects, spiders, crabs, and their kin. All these organisms have a body divided into repeating segments, typically with paired appendages. Two smaller phyla, the Onychophora and Tardigrada, are close relatives of the arthropods and share these traits.

The ecdysozoans also include the Nematoda or roundworms, the second largest animal phylum. Roundworms are typically microscopic, and occur in nearly every environment where there is water. A number are important parasites. Smaller phyla related to them are the Nematomorpha or horsehair worms, which are invisible to the unaided eye, and the Kinorhyncha, Priapulida, and Loricifera. These groups have a reduced coelom, called a pseudocoelom.

The remaining two groups of protostomes are sometimes grouped together as the Spiralia, since in both embryos develop with spiral cleavage.

Platyzoa

Bedford's Flatworm, Pseudobiceros bedfordi
Enlarge
Bedford's Flatworm, Pseudobiceros bedfordi

The Platyzoa include the phylum Platyhelminthes, the flatworms. These were originally considered some of the most primitive Bilateria, but it now appears they developed from more complex ancestors.

A number of parasites are included in this group, such as the flukes and tapeworms. Flatworms lack a coelom, as do their closest relatives, the microscopic Gastrotricha.

The other platyzoan phyla are microscopic and pseudocoelomate. The most prominent are the Rotifera or rotifers, which are common in aqueous environments. They also include the Acanthocephala or spiny-headed worms, the Gnathostomulida, Micrognathozoa, and possibly the Cycliophora. These groups share the presence of complex jaws, from which they are called the Gnathifera.

Lophotrochozoa

Big blue octopus, Octopus cyanea
Enlarge
Big blue octopus, Octopus cyanea

The Lophotrochozoa include two of the most successful animal phyla, the Mollusca and Annelida. The former includes animals such as snails, clams, and squids, and the latter comprises the segmented worms, such as earthworms and leeches. These two groups have long been considered close relatives because of the common presence of trochophore larvae, but the annelids were considered closer to the arthropods, because they are both segmented. Now this is generally considered convergent evolution, owing to many morphological and genetic differences between the two phyla.

The Lophotrochozoa also include the Nemertea or ribbon worms, the Sipuncula, and several phyla that have a fan of cilia around the mouth, called a lophophore. These were traditionally grouped together as the lophophorates, but it now appears they are paraphyletic, some closer to the Nemertea and some to the Mollusca and Annelida. They include the Brachiopoda or lamp shells, which are prominent in the fossil record, the Entoprocta, the Phoronida, and possibly the Bryozoa or moss animals.

History of classification

White's Tree Frog, Litoria caerulea.
Enlarge
White's Tree Frog, Litoria caerulea.

Aristotle divided the living world between animals and plants, and this was followed by Carolus Linnaeus in the first hierarchical classification. Since then biologists have begun emphasizing evolutionary relationships, and so these groups have been restricted somewhat. For instance, microscopic protozoa were originally considered animals because they move, but are now treated separately.

In Linnaeus' original scheme, the animals were one of three kingdoms, divided into the classes of Vermes, Insecta, Pisces, Amphibia, Aves, and Mammalia. Since then the last four have all been subsumed into a single phylum, the Chordata, whereas the various other forms have been separated out. The above lists represent our current understanding of the group, though there is some variation from source to source.

Retrieved from " http://en.wikipedia.org/wiki/Animal"