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Measuring algorithmically infused societies

Claudia Wagner1,2,3 ✉, Markus Strohmaier1,2,3, Alexandra Olteanu4,5, Emre Kıcıman6, 
Noshir Contractor7 & Tina Eliassi-Rad8

It has been the historic responsibility of the social sciences to investigate human 
societies. Fulfilling this responsibility requires social theories, measurement models 
and social data. Most existing theories and measurement models in the social sciences 
were not developed with the deep societal reach of algorithms in mind. The 
emergence of ‘algorithmically infused societies’—societies whose very fabric is 
co-shaped by algorithmic and human behaviour—raises three key challenges: the 
insufficient quality of measurements, the complex consequences of (mis)measurements,  
and the limits of existing social theories. Here we argue that tackling these challenges 
requires new social theories that account for the impact of algorithmic systems on 
social realities. To develop such theories, we need new methodologies for integrating 
data and measurements into theory construction. Given the scale at which 
measurements can be applied, we believe measurement models should be trustworthy,  
auditable and just. To achieve this, the development of measurements should be 
transparent and participatory, and include mechanisms to ensure measurement 
quality and identify possible harms. We argue that computational social scientists 
should rethink what aspects of algorithmically infused societies should be measured, 
how they should be measured, and the consequences of doing so.

We are witnessing the emergence of algorithmically infused socie-
ties who are shaped by deeply entangled algorithmic and human pro-
cesses and behaviour; with early mentions of ‘algorithmic societies’ 
dating back to over a decade ago1–4. Algorithms—and the tools, services 
and platforms they power—mediate social, economic and political 
processes by shaping a wide range of activities and decision-making 
practices across many areas. Algorithmic influence can be observed 
in how people consume information or cultural artefacts5–12 and how 
they interact with others13–16. This influence is also increasingly tangi-
ble in many high-stakes areas, such as healthcare17–19, credit scoring20, 
law enforcement21,22 and employment23–25. Although algorithms can 
provide many benefits, including efficiency, objectivity, auditability, 
fairness and social good26,27, they can also amplify—either inadvertently 
or purposefully—existing inequalities and biases in society, or might 
even introduce new ones28–34.

The challenges of measuring algorithmically infused 
societies
The social sciences have historically been concerned with study-
ing individual- and societal-level phenomena, including social struc-
tures, social relationships and dynamics, as well as the emergence and 
impact of social norms and values. Because of this, social scientists 
have developed rich methodologies that support theory construc-
tion35,36. They have also established measurement theory (for exam-
ple, psychometrics)37,38 and survey methodology39 as research areas 
dedicated to the development of new measurement models and their 
quality assurance.

However—to a large degree—the existing toolkit of social theories 
and measurement models was not created with the deep societal reach 
of algorithms in mind, and may thus not apply to human societies that 
are permeated by algorithms (see Box 1). In these societies, social, 
economic, political and scientific processes both influence and are 
influenced by the design and presence of algorithms (see Fig. 1).

Algorithmically infused societies are thus a fertile ground for what is 
sometimes known as Goodhart’s law—the conflation of ‘is’ and ‘ought’40, 
where the mere existence of measurements can alter the behaviour 
of individuals41. Measurements may also indirectly alter behaviours 
by informing the development of social theories and subsequently 
influence the algorithms and technologies that draw on those theories. 
Consider recommendation algorithms: designers of such algorithms 
may ground their solutions in various theories including cognitive 
dissonance42, balance theory43,44, or ideas related to homophily45 and 
human categorization46,47. This may result in what Healy calls ‘performa-
tivity’48. The performativity thesis conjectures that theories have the 
potential to “reformat and reorganize the phenomena [that] models 
purport to describe”48. The algorithms that constrain or nudge our 
behaviour (for example, by making some content more visible than 
other) constantly change but often without us noticing49,50. It is these 
characteristics of dynamicism, heterogeneity, interconnectedness 
and opacity of algorithmically infused societies that makes their study 
more challenging.

These concerns are not entirely new. Science and technology stud-
ies, legal, and other scholars have long discussed (and raised concerns 
about) how technology and other social artefacts (such as norms, 
culture or political frameworks) blend and influence each other, for 
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examples, see refs. 40,47,51–55. Computational social science has emerged 
as a (sub)discipline that “leverages the capacity to collect and analyse 
data with an unprecedented breadth and depth and scale” to conduct 
empirical studies of individual- and societal-level phenomena56,57 
Although computational social science has made critical progress in 
understanding empirical phenomena such as the spread of misinforma-
tion58,59 and political polarization7,60, it has often overlooked questions 
about what even attempting to measure perceived social phenomena 
signifies, what measurements enable and for whom, or how to ensure 
the validity and reliability of measurements.

In this paper, we consequently highlight three key challenges to 
measuring social phenomena in algorithmically infused societies: 
first, we discuss the insufficient quality of measurements; second, we 
examine the complex consequences of (mis)measurements; and third, 
we explore the limits of existing social theories. We discuss how these 
challenges are linked to the essence of algorithmically infused socie-
ties and outline a possible roadmap for future work. In particular, we 
suggest that researchers develop trustworthy measurement models, 
mitigate the harmful consequences of (mis)measurements, and con-
struct integrated and empirically informed theories.

The insufficient quality of measurements
Characterizing, explaining and predicting social phenomena requires 
measurement models that tie theoretical constructs to observable 
data. As a result, social scientists have been developing measurement 
instruments, such as survey scales, to attempt to explicitly model the 
relationship between a theoretical construct of interest and, for exam-
ple, survey questionnaire items. The construction of measurement 
models and instruments is, however, often grounded in assumptions 
that should be identified and explicitly articulated (and tested) before 
using the resulting measurements61–63. Social scientists have devel-
oped quality criteria for measurement modelling to avoid using instru-
ments for which the validity is unclear or even questionable39,62,64. These 
quality criteria also facilitate the comparison of empirical results and 
the reusability of measurement models (and the underlying data).

The algorithmic infusion of society has led to major changes in the 
social sciences as more and more aspects of our social, political and 
economic lives are captured by social data. This has facilitated the adop-
tion of machine learning models in the social sciences, which may assist 
with the measurement, the prediction and—to some degree—also the 
explanation of theoretical constructs and social phenomena65. Machine 
learning models can be powerful, and some can also help to quantify 
causal relationships66. Yet they often come as ‘black boxes’ that do not 
make their assumptions explicit and thereby introduce or exacerbate 
potential mismatches between the theoretical construct of interest and 
its operationalization63,67. Although the Common Task Framework (CTF) 
has successfully driven progress in some areas of machine learning68, 

the ‘leaderboardism’ in science has also led to the quick development 
of mis- or under-specified benchmark datasets and shared tasks69,70. 
These datasets often fail to specify or capture the construct purported 
to be measured (by, for example, failing to operationalize the different 
dimensions of a construct)69,71,72. They also fail to define and justify the 
criteria and metrics for assessing the quality of a measurement model, 
describe and justify the data selection and preprocessing methods, 
and acknowledge and mitigate biases in the data69,73–75.

In algorithmically infused societies, the theoretical constructs we 
aim to measure, predict and explain are often unstable76 and can also 
be affected by the act of measuring, predicting or explaining41,77. They 
may not, however, change equally for everyone as companies often 
launch A/B tests or personalize algorithms according to some user 
characteristics—for example, based on the current user location78, or 
based on their gender or race79. The data that are collected are also often 
‘collected under the algorithm’, with algorithms shaping the data that 
computational social scientists subsequently base their measurements 
on. This can threaten the validity of research results and can complicate 
the evaluation of alternative algorithms before their deployment. The 
latter problem is currently addressed by research in the area of policy 
learning80, which explores the evaluation of performance of policies 
without deployment and in the area of recommendation algorithms, 
which aims to deconvolve feedback loops in recommender systems81.

We therefore argue that a key challenge for computational social 
scientists is defining quality standards and best practices for the devel-
opment of trustworthy measurement models.

The consequences of (mis)measurements
In algorithmically infused societies, highly individualized and granular 
behaviour can be recorded and thus measured. Although measure-
ments can provide evidence to help to address pressing challenges 
in our society—for example, by flagging those at risk for unwanted or 
harmful events such as child abuse, suicide, poverty or environmen-
tal disasters82—measurements by their very nature can often lead to 
increased perceptions of objectivity of human and social phenomena 
that might be subjective in nature. Such individualized measurements 
could, for instance, lead to inflated notions of self or to an erosion of 
solidarity with others83.

Measurements can also become a tool for self-improvement, or the 
improvement of organizations or societies, thereby influencing the 
evolution of social constructs and entities over time. In a way, we man-
age what we measure and what we measure often informs policymaking 
and resource allocation84; and it can as a result even influence how we 
optimize our behaviour32,41. At the same time, not everything that is 
measured should be measured, for example, owing to concerns of pri-
vacy or possible harms if data taken out of context are misinterpreted 
by an algorithm or other people. And what we do not measure—or what 
we ignore and do not see as a result—also can have implications for soci-
ety. It is critical to reflect on and assess the potential consequences of 
measurements before they are put in place or before they become out of 
place; however, the consequences of measurements are hard to antici-
pate, especially when ‘black box’ models—which might adapt to their 
environment and change it at the same time—are used as measurements.

In computational social science—where statistical and machine learn-
ing models are now routinely being incorporated in measurement 
models—there is often also an implicit fit-for-purpose assumption. The 
quality of these models is assessed on the basis of metrics that capture 
how well a model characterizes some observable data (its goodness of 
fit) or predicts some future data (its predictive performance), or even 
how well a measurement approximates the construct of interest (its 
validity and reliability). Neither one of these metrics, however, offers 
much insight into possible unintended consequences of measurements 
or how to mitigate any such consequences.

Harmful consequences can also arise from mismatches between 
the theoretical understanding of a social construct and the 

Box 1

Key terms and concepts
Measurement models: theoretical and practical approaches that 
tie high-level social constructs to observable data. Measurement 
models justify, for example, why what we are measuring is what we 
think we are measuring.
Social data: directly observable information captured via 
human interactions with or through digital devices, services and 
infrastructure.
Social theories: explanatory conceptualizations of social 
phenomena.
Algorithms: automated processes that are increasingly often 
integrated within societally critical processes.
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operationalization of that construct, an issue of construct valid-
ity63,69. This is particularly concerning when measurements are used 
in high-risk scenarios where the data that underpin the measurements 
(for example, arrest records) may not properly match the actual social 
construct the measurements are meant to capture (for example, actual 
crimes). Such mismatches can lead to measurements that could (and 
often do) replicate inequity, mask it, transfer it, exacerbate it, and even 
compromise inequity oversight29.

What makes such possible harmful effects more concerning in algo-
rithmically infused societies is also the scale at which measurements 
are often done, as well as their perceived objectivity, efficiency and 
trustworthiness26. A first step towards addressing inequity concerns 
and mitigating harms is to audit measurements along their under-
pinning data and statistical models. Such audits could help to reveal 
both misuses and mismatches between data, theoretical constructs 
and measurement models that might expose, distort or even erase 
behaviours, experiences or identities.

Auditing may however require both visibility into how the measure-
ment is done (transparency)—not to be confused with transparency as 
the publicizing of the measurement values, which can have its own set 
of harmful effects85—and the ability to understand why certain measure-
ment values were obtained (interpretability). For example, ensuring 
procedural justice—that is, ensuring that the process by which a con-
struct of interest is measured is fair—might require both seeing and 
understanding the data and the computations or statistical models 
involved in the operationalization of a particular measurement from 
these data86.

The transparency (and interpretability) of measurements can, how-
ever, be construed as being opposite to privacy87. Privacy risks can arise 

from the prevalence of measurements and can be compounded by the 
transparency of their instrumentation—which may leak additional 
information88,89; calling further attention to the question of what should 
not be measured.

Indeed, a known tension when auditing measurements (and systems) 
for inequity is how to assess potential disparities across demographic 
groups or individuals with (little or) no demographic information90—
typically requiring information about demographic or identity mark-
ers to distinguish how similar two individuals are or what groups they 
belong to91,92. Although the right trade-offs (and even how they should 
be determined) are still being debated, they ought to be contextually 
dependent; and—as the “nothing about us without us” principle93–95 
suggests—those who are likely to bear the risks should have a key role in 
their determination. Complicating matters even further, measurements 
could help to make society more “legible”96 as a whole, and thereby 
enable states to enact policies or interventions that might not be pos-
sible without extensive measurements.

For computational social scientists who want to measure, predict 
or explain phenomena in algorithmically infused societies, another 
challenge is thus how to carefully consider and anticipate potentially 
harmful consequences of measurements, as well as how to establish 
mechanisms to detect and mitigate them.

The limits of existing social theories
Theories explain phenomena and are a crucial ingredient for develop-
ing trustworthy measurements and avoiding over- and mismeasure-
ments. They also enable the transfer of measurements that are local 
with respect to time and space to new contexts97. Although computa-
tional social science has demonstrated its potential to test and adapt 
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Fig. 1 | Measuring algorithmically infused societies. a, b, In algorithmically 
infused societies, not only do social, economic, political and scientific 
processes impact each other (a), but algorithms also operate at different 
levels—shaping and being shaped by their environment. Scientific processes 
can shape algorithmic platforms when newly developed algorithms also lead to 
new measurements, hypotheses and theories. For example, neural language 
models may enable new measurements of similarity between users, impacting 
homophily measurements and theories about user interactions. At the same 
time, platforms determine what can be observed; as data are often collected 
‘under the algorithm’ and platforms decide what can be collected, and who and 
what type of access they have to the data and the underlying systems. For 
example, hate speech detection algorithms on social media platforms may 
impact measures of civility. Organizational models such as Social Science One 
(https://socialscience.one) support collaborations between industry and 
academic partners, but still define who has access to what data and for which 

purpose. Finally, algorithms can also shape social, political and economic 
processes (b). The social acceptability of algorithms may influence which 
algorithm is adopted. Political regulations and economic goals of platform 
providers may also determine what will be deployed. Recommendation 
algorithms may influence our micro-behaviours by suggesting whom to date or 
what books to read; nudged behaviours that algorithms may then learn from. 
Ranking algorithms can impact political processes by determining the 
visibility of political information, which in turn may be regulated by political 
actors. Optimization algorithms may affect both individual purchasing 
decisions and societal level financial processes by optimizing prices and 
interest rates, yet the optimization goals might be controlled by private 
entities. Both individual and societal level phenomena can thus be influenced 
by algorithmic systems, making it difficult to disentangle algorithmic and 
human behaviours and how they influence each other.

https://socialscience.one
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existing social theories at scale98–100, less progress has been made in 
developing new theories101,102. This is despite the need for theories 
that recognize the role of algorithms in society; and despite the vol-
ume, variety, velocity and veracity of digital traces about human and 
algorithmic behaviour, which call for a more empirically informed, 
iterative theory development.

Although situated contexts are usually considered, existing theo-
ries in the social sciences were not developed with the deep societal 
reach of algorithms in mind. For example, theories of homophily were 
devised to understand ‘natural’ self-selection behaviour in societies, 
such as the way students form relationships in schools on the basis 
of certain attributes such as age, ethnicity or gender. However, stud-
ies of homophily in algorithmically infused societies require us to 
account for how algorithmic amplification or dampening—such as 
via friend-recommender systems, newsfeeds or social feedback and 
voting mechanisms—can influence relationship formation16. At the 
same time, these theories also need to account for social, economic or 
political forces that may lead to changes in the algorithms. For example, 
if some people game or exploit an algorithm for their own ends, it may 
become necessary from an economic standpoint to adapt the algorithm 
to avoid financial harms to other users or harm to the platform itself. 
From a social or political standpoint it might become necessary to 
adjust how information consumption is regulated by algorithms if it 
leads to increased segregation or polarization in society. But it remains 
an open question even which stakeholders should decide when and 
how algorithms should be deployed or amended.

It is this fusion of algorithmic and human behaviour and processes 
that leads to feedback loops and calls for integrated theories that take 
a more comprehensive, systems-level perspective. Isolated studies of 
one without explicitly accounting for the other will necessarily ignore 
how such feedback loops affect the constructs and the phenomena they 
are attempting to measure and understand. This not only has direct 
implications for computational studies of human behaviour, but also 
consequences for social studies of machine behaviour103.

The adaptive nature of algorithmically infused societies where 
algorithms and humans habitually interact with each other and their 
dynamic population characteristics in turn invite the fusion of theory 
and data—for example, by integrating theory-driven and data-driven 
approaches. On the one hand, pure data-driven research that only relies 
on “readymade data”104,105 has been criticized for asking questions 
that appear opportunistically driven by what data are available and 
for overlooking different types of data biases6,74,105. On the other hand, 
theory-driven research has also been criticized for limiting research to 
a “theoretical straightjacket”106. This criticism has stimulated an ongo-
ing discussion about the value of problem- and solution-oriented107,108 
and phenomenon-driven106 research in the social sciences. Although 
experimental approaches could alleviate some of the challenges that 
come with data- and theory-driven approaches, they are often hard 
to scale and might not even be feasible to execute when faced with 
highly individualized, parameterized and algorithmically confounded 
environments.

We thus believe that, moving forward, a persistent challenge for 
computational social scientists lies in how to effectively navigate data- 
and theory-driven research, a challenge that requires us to rethink 
the relationship between data and theory, particularly when studying 
algorithmically shaped social phenomena .

Towards responsible and trustworthy measurements 
of algorithmically infused societies
To address these challenges, we believe that the computational social 
science community should focus on developing trustworthy measure-
ment models, mitigating the harmful consequences of (mis)measure-
ments, and constructing more integrated and empirically informed 
social theories (see Box 2).

Developing trustworthy measurements
Measurement models of algorithmically infused societies often rely 
on statistical and machine learning models that learn to what extent 
observable indicators are related to the construct of interest. We believe 
that the development of trustworthy measurement models for algorith-
mically infused societies requires us to rethink both the measurement 
development process and its quality assurance.

Triangulating data to examine measurement quality. To enable re-
search on the quality of measurement models we often need to trian-
gulate data—including interlinked data from different channels and 
sources (for example, self-reports collected via surveys or interviews, 
observational data in the form of text, speech and locations, and ex-
perimental data that capture behavioural differences in response to 
system-level interventions). Depending on the research design, the 
interlinking of data happens either ex ante or ex post and either on an 
aggregated or individual level109.

Different approaches to data collection and triangulation lead to 
epistemological and ethical challenges that need to be carefully con-
sidered. When linking data ex ante on an individual level (for example, 
via an internet panel that combines surveys with observations of web 
browsing behaviour), recruiting participants and obtaining informed 
consent are crucial steps to avoid ethical and epistemological issues. 
When data are interlinked ex post on an aggregated level—for exam-
ple, by comparing topic salience for the general public versus online 
audiences for a period of interest such as an election campaign110,111—
epistemological (such as self-selection bias and platform affordances) 
and ethical concerns must be considered.

Although no measurement model is perfect, we might learn about 
the benefits and limitations of different models by comparing them 
using data that might be confounded by the same variables (for exam-
ple, observation period, research subjects, external events). Previous 
research showed that measurement models that rely on self-reports to 
make inferences about a range of behaviours—such as communication 
patterns112, physical activity113 or internet or smartphone usage114–116—are 

Box 2

Best practices for measuring 
algorithmically infused societies
1.   Ensure that your investigations are guided by transparent and 

participatory processes that are informed by theory, data and 
ethical considerations.

2.   Integrate existing data, contextual information (including 
about algorithmic impact and population characteristics), 
computational methods and measurements into theory 
construction.

3.   Develop and reuse measurement models informed by theory, 
document and justify the assumptions underlying them, 
document the data and justify their suitability for characterizing 
the phenomena, and reflect on the algorithmic influences on the 
data and the measurement models.

4.   Develop and justify quality criteria and datasets that allow 
validating competing measurement models.

5.   Reflect on possible harmful consequences of measurements—
including from measuring the wrong theoretical construct, 
from mis- and overmeasuring the right construct, from failures 
to measure, and from consequences of measurements on the 
design of algorithms—and describe mitigation strategies.
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often inaccurate owing to cognitive and social biases (for example, false 
recall and social desirability bias). This not only highlights limitations 
of widely used survey measurements, but also informs the constant 
improvement of those instruments.

We believe that the computational social science community will also 
benefit from additional quantitative and qualitative research on the 
quality of observational data and their collection instruments. A good 
example is a recent study that compares face-to-face contacts recorded 
by RFID sensors with manually annotated video recordings, providing 
insights into the accuracy of those sensors117. This example highlights 
that research on the quality of measurements is important and that 
triangulated datasets such as the Copenhagen Networks Study118 might 
help to stimulate this type of research. How to collect and share such 
datasets remains, however, an open question that requires a good bal-
ance between the privacy protection of individuals, possible harmful 
consequences to different stakeholders (particularly to historically 
and presently disadvantaged groups), and the benefits of these data 
and the research that they enable.

Developing guidelines and best practices to increase the quality of 
measurements. Although the computational social science commu-
nity is continually increasing its repertoire of measurement practices, 
it still lacks clear quality standards and frameworks that support the 
documentation of the measurement development process. Practices 
from survey methodology62,75,119 and other domains, such as the medical 
industry120, can inform our thinking about ways to develop trustworthy 
and responsible measurements for social phenomena. Documentation 
guidelines and frameworks recently developed for the AI community 
might also provide a starting point for the documentation of the meas-
urement development process for social constructs73,121–123.

Most of these practices have, however, been developed assuming 
more static, controlled environments. In algorithmically infused 
societies even the constructs that we aim to measure are often ‘mov-
ing targets’ as both their meaning and their operationalization can 
change over time. Furthermore, predictions—as measurements of 
what might happen—when used for decision-making may influence the 
outcome that they aim to predict77, thereby highlighting a fundamental 
problem of the interwoven nature of algorithmically infused societies. 
To address this challenge, computational social scientists can also draw 
inspiration from adaptive learning methods that react to concept drifts 
by updating predictive models during their deployment124–126. A special 
case of such distribution drifts occurs when prediction models inform 
the decisions that impact the outcome that they aim to predict77—for 
example, traffic predictions impact traffic patterns and popularity 
rankings impact popularity. This phenomenon also affects the devel-
opment of measurement models in algorithmically infused societies, 
because the measurement—if it fails to adapt to changes or if it affects 
the outcome that it measures—may become invalid.

We believe that as a community we should define quality standards and 
best practices for the documentation, development and maintenance 
of measurement models, which help to increase the trustworthiness of 
measurement models. A trustworthy measurement requires that the 
phenomenon and related constructs (with all their dimensions) are care-
fully specified and operationalized via a measurement model, that the 
assumptions of the model are precisely documented and are supported 
by either strong or highly plausible evidence, and the criteria and test 
conditions for validating the measurement model are well documented 
and justified. Although this list may be a good starting point, it remains an 
open question how to adapt best practices from other fields to the instru-
mentation of measurements of social phenomena situated in ephemeral, 
ever-changing and algorithmically confounded environments.

Mitigating (mis)measurement harms
As scientists, we decide what to measure, how to measure it, and how to 
rely on the values of the measurements. These decisions often reflect 

the set of principles that guided them—in other words, they reflect 
implicit or explicit policies and assumptions about what is important 
or what is worth measuring. We believe that mitigating possible harm-
ful consequences of measurements in algorithmically infused socie-
ties requires fundamentally rethinking how the measurements are 
both carried out and relied upon. Already when the data underlying a 
measurement are selected, or when the processes for instrumenting 
the measurement are designed, the potential harms from measuring 
algorithmically infused societies need to be systematically considered. 
Doing so requires documentation, good practices, analytical frame-
works for reflection, processes for engagement with affected people 
and groups, and understanding when (not) to measure.

Developing a responsible computational social science agenda. 
Even though the responsible AI literature—for example, refs. 31,127–130, 
among many others—has some of its roots in social sciences and human– 
computer interaction research, computational social science as a com-
munity has not put forward an agenda on how the same issues trans-
late to the measurement of social phenomena—particularly given the 
ubiquity with which machine learning and other statistical models are 
used in the instrumentation of such measurements. Although validity, 
reliability and goodness of fit are important quality criteria for meas-
urement models, we believe—particularly when studying social phe-
nomena—that we should also ask, for example, whether the measure-
ment models are just (for example, non-discriminatory) and equitable, 
transparent (for example, forthright about normative commitments) 
and interpretable, and privacy preserving. These are important quality 
criteria not only for how measurement models are made, but also for 
how the measurements are being used. We should also ask who gets to 
decide what is being measured, who has access to the measurements, 
who decides how the measurements are being used, and how this may 
impact various downstream outcomes.

To understand and document the range of possible harms, in the AI 
community there are many calls for processes that require researchers 
and practitioners to reflect on, anticipate and communicate possible 
adverse impacts from the development and deployment of AI tech-
nologies123,131. These calls highlight that techniques for preempting 
unknown or future adverse impacts—arising from how existing or new 
measurements are instrumented and deployed—are largely missing. 
Conjecturing about possible future impacts is always difficult131,132, 
particularly in ever-changing environments, as algorithmically infused 
societies often are; or when the models underpinning the measure-
ments can demonstrate novel behaviours by simultaneously learning 
from and influencing their environment.

These challenges highlight the need for and potential of both 
qualitative and quantitative research: possible future impacts could 
be explored via ethical reflections or empirical studies on the conse-
quences of the act of measuring, of communicating measurement 
results differently and to different stakeholders, and of using the meas-
urements in different settings. Participatory approaches that aim to 
ensure all relevant stakeholders (particularly those being measured 
or more likely to experience adverse consequences) are involved in 
reflection and deliberation about a system design, may also support 
the anticipation of future impacts. To implement these, we could 
draw inspiration from the value-sensitive-design framework, which 
is intended to incorporate human values in early design phases133. We 
should also design mixed-methods approaches that combine quantita-
tive data sampling and generation with user and experimental studies 
that elicit human feedback134,135.

Reflecting on what not to measure. Adverse consequences could 
also stem from overlooking that measurement models (and the data 
and statistical models that constitute them) are mostly what has pre-
viously been called “design materials”136—in other words, they are 
just means to help us to understand (often algorithmically infused) 
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social phenomena. Even when measurements are examined through 
a responsible computational social science lens, those lenses might 
still reflect techno-solutionism perspectives that focus on providing 
computational or modelling remedies for faulty measurement instru-
mentations—as is often the case in the responsible AI literature137,138. 
Such perspectives fail to ask when (under what conditions) and wheth-
er certain measurements should even be carried out. Measurements 
models—that risk leaking private information, that are motivated by 
prejudiced beliefs about individuals or groups, or that could be used to 
discriminate against groups or individuals—should not be developed 
or used. Similarly, we might also fail to properly reflect upon possible 
consequences of not measuring—which can result in harms of erasure 
and misrepresentation by possibly rendering experiences and even 
individuals invisible, among others.

Developing integrated theories
The webbing of human and algorithmic behaviour and processes stimu-
lates the need for integrated theories that bridge the gap between 
macro- and microscales and acknowledge the role of algorithms and 
of the computational tools, services and platforms that they power 
in society. At the same time, the volume, variety, velocity and verac-
ity of digital traces about human and algorithmic behaviour that are 
recorded in constantly changing socio-technical environments invites 
us to reimagine the role of data and measurements in the theory devel-
opment process. But what is needed to support the construction of 
integrated and empirically informed theories that explain phenomena 
in algorithmically infused societies?

Developing transparent, participatory processes for examining 
algorithmically infused social realities. Theories help us to explain 
phenomena, ask interesting questions, and develop solutions for open 
problems. However, as a community we should first identify a set of 
problems and phenomena that are important and that allow us to em-
pirically validate, compare, and assess the utility of multiple competing 
theories operating at multiple levels108,139. Although this set would guide 
the theory and measurement development process and help researchers 
entering the field, we should also stress the importance of deliberation.

In algorithmically infused societies, the possibilities of what can 
be measured, predicted and explained can sometimes appear unlim-
ited—a problem that can be exaggerated by emerging and ephemeral 
socio-technical phenomena. At the same time, the consequences of 
measurements are hard to anticipate because they may both directly 
and indirectly affect behaviour. The socio-technical nature of problems 
and phenomena and the potential impact of measurements in algorith-
mically infused societies requires scholars from different disciplines 
to be involved in these processes in order to negotiate the selection, 
specification and conceptualization of problems and phenomena. 
Scientific practices involve all kinds of value judgments, including 
deciding which problems are important and interesting enough to work 
on. We believe that it is crucial to make this process transparent and 
participatory to ensure that not only a diverse set of scholars is involved, 
but also that all relevant stakeholders are included, particularly those 
likely to experience adverse consequences.

Developing methodologies for integrating data and measurements 
into theory construction. Although measurement models that aim 
to quantify theoretical constructs (for example, political leaning or 
work–life balance) need to be connected with theory, theories may also 
benefit from integrating data and measurements into the theory con-
struction process. This is especially the case in algorithmically infused 
societies where new socio-technical phenomena emerge frequently and 
where existing phenomena may evolve, and may thus require updating 
and rethinking existing theories.

An existing methodology that enables the integration of data into the 
theory development process is grounded theory140. The methodology 

is widely used in qualitative social science research, although it has 
been criticized by scholars who question whether it has fulfilled its 
promise to create new empirically based theories141–143. One potential 
weakness of grounded theory is its focus on induction. We believe that 
iterative abductive reasoning cycles provide a promising alternative for 
understanding new phenomena, which should not solely rely on exist-
ing theories and should not solely be explained from data. In such itera-
tive cycles, computational methods—including machine learning and 
natural language processing methods144–146 and empirically calibrated 
simulations and agent-based models147–149—may support both inductive 
and deductive reasoning by revealing and testing mechanisms and 
patterns that potentially explain social phenomena36,150.

However, it remains an open question how different types of compu-
tational methods and measurements can best support experts in con-
structing theories—for example, by presenting measurement results in 
a human-interpretable way or by informing experts about anomalies 
that do not follow detected patterns151,152. As a community we need to 
develop methodologies and best practices for integrating data and 
computational methods into the theory construction to ensure that 
our theories are not informed by black box measurement models rely-
ing on unsupported assumptions, leaps of logic or biased data that do 
not capture the constructs and mechanisms of interest.

Outlook
We are already living in algorithmically infused societies, with algo-
rithms shaping decisions that constantly influence and are influenced 
by human behaviour. The very essence of algorithmically infused soci-
eties intensifies concerns about (mis)measurement and the relation-
ship between data and theory. For example, although algorithmically 
infused societies may provide many opportunities to enhance our 
theoretical and empirical understanding of the social world, poor prac-
tices for the development and evaluation of measurements and theories 
may also lead to “a new form of physiognomy”—the pseudoscience of 
inferring people’s inner states from their outer appearance146,153. In 
addition, measurements are not only scientific instruments that quan-
tify and reflect the nature of subjects in the social world, but they also 
support predictions and explanations, influencing the construction of 
theories and the development of new algorithms. Therefore, they can 
also directly or indirectly shape the future of algorithmically infused 
societies. The development of responsible and trustworthy measure-
ment models for algorithmically infused societies therefore requires 
careful reflections on the theoretical underpinning of measurements 
and their potential consequences. Finally, the evaluation of measure-
ment models is often limited to how well a model characterizes some 
observable data (its goodness of fit) and/or how well it approximates 
the construct of interest (its validity and reliability); however, a model’s 
evaluation often neglects potential consequences of measurements. 
This is not only problematic because measurements (and also decisions 
on what not to measure) may have harmful consequences for individu-
als, social groups and society as a whole, but these consequences might 
also be hard to identify, hard to quantify, and even harder to rectify.
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