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Causal Diagrams for Epidemiologic Research 
Sander Greenland,1 Judea Pearl,2 and James M. Robins3 

Causal diagrams have a long history of informal use and, more critical evaluation of traditional epidemiologic criteria for con- 
recently, have undergone formal development for applications founding. In particular, they reveal certain heretofore unno- 
in expert systems and robotics. We provide an introduction to ticed shortcomings of those criteria when used in considering 
these developments and their use in epidemiologic research. multiple potential confounders. We show how to modify the 
Causal diagrams can provide a starting point for identifying traditional criteria to correct those shortcomings. 
variables that must be measured and controlled to obtain (Epidemiology 1999;10:37-48) 
unconfounded effect estimates. They also provide a method for 

Keywords: bias, causation, confounding, epidemiologic methods, graphical methods, observational studies. 

Summarization of causal links via graphs or diagrams has 
long been used as an informal aid to causal analysis. 
Causal graphs in the form of path diagrams are an 
integral component of path analysis1 and structural 
equations modeling.2 In more recent times, the theory of 
directed acyclic graphs (DAGs) has been extended to 
application in expert-systems research.3'4 In these appli- 
cations, there is a pressing need for valid formal rules 
that allow an automated system or robot to deduce 
correctly the presence or absence of causal links given 
correct background information and new data. The out- 
growth of this research has been the development of a 
formal theory for evaluating causal effects using the 
language of causal diagrams.5s6 Unlike path analysis and 
structural-equations modeling, this theory does not re- 
quire parametric assumptions such as linearity. 

The theory of causal graphs is equivalent to the G- 
computation theory of Robins.7-9 It has a benefit, how- 
ever, of providing a compact graphical as well as alge- 
braic formulation of assumptions and results, which may 
be easier for the general reader to comprehend. In ad- 
dition, it provides a novel perspective on traditional 
epidemiologic criteria for confounder identification. 
This perspective reveals how traditional criteria can be 
inadequate when multiple confounders must be consid- 
ered simultaneously. We describe the modifications re- 
quired of traditional criteria that enable their valid ex- 
tension to situations involving multiple confounders. 
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We here provide a brief introduction to the theory of 
causal diagrams based on DAGs.56 We pay special at- 
tention to its relation to nongraphical epidemiologic 
treatments of confounding.10"-3 We show how diagrams 
can serve as a visual yet logically rigorous aid for sum- 
marizing assumptions about a problem and for identify- 
ing variables that must be measured and controlled to 
obtain unconfounded effect estimates given those as- 
sumptions. Thus, use of such graphs can aid in planning 
of data collection and analysis, in communication of 
results, and in avoiding subtle pitfalls of confounder 
selection. 

Except where noted otherwise, the present paper will 
deal only with relations among variables in a given 
source population; that is, we will deal only with struc- 
tural (systematic) relations among the underlying vari- 
ables of interest, so that issues of measurement error and 
random variation will not arise. We will also not present 
proofs of results, but we will give references in which 
proofs can be found. 

A Rationale for Graphs 
Any deduction about a causal relation must start from 
some set of assumptions, which we call the analysis 
model.14 For example, such a deduction may assume that 
uncontrolled confounding is negligible; this assumption 
usually corresponds to a set of assumptions that various 
uncontrolled factors have negligible associations with 
the study factor or study disease, given what has been 
controlled. The subsets of these assumptions pertaining 
to causation, measurement, and selection correspond to 
the causal, measurement, and selection models, whereas 
the subset of assumptions pertaining to the probability 
distribution of the observations corresponds to the sta- 
tistical model. These subsets of assumptions may over- 
lap. For example, the assumption that vaginal bleeding 
increases the chance of diagnosis of endometrial cancer 
and hence selection for a case-control study is common 
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to all four subsets; it is a probabilistic assumption about 
causation of diagnosis, measurement of disease, and se- 
lection for study.15 

Sometimes the assumptions of an analysis model are 
so obviously correct that they sound silly to explicate; an 
example is the assumption that the apparent deadliness 
of botulism in humans in not attributable to confound- 
ing factors. In such situations it is rarely recognized that 
a model is present. But most epidemiologic research is 
plagued by uncertainty about assumptions, in which case 
it is important to recognize and explicate fully the anal- 
ysis model. 

A serious drawback of common statistical models is 
that they embody many parametric assumptions that are 
not known to be correct and may well be incorrect. 
Consider, for example, a conventional correlated-out- 
come logistic regression analysis of data on daily air 
pollution exposure and respiratory illness in schoolchil- 
dren, with sex entered as a covariate. The analysis model 
assumes (among other things) that the odds ratios relat- 
ing pollution to the illness do not vary by sex and that 
the relation of the illness odds to pollution is exponen- 
tial. Neither of these assumptions is known to be correct, 
and tests of them often have little power to detect 
important violations. 

Another drawback of common statistical models is 
that they cannot capture all types of assumptions. Con- 
tinuing the example, a conventional logistic-regression 
model for illness cannot represent or impose the assump- 
tion that the sexes of the children are not affected by 
pollution exposure, even though this assumption is cor- 
rect and may be useful in an analysis of pollution effects. 

Causal diagrams are graphical models for causal rela- 
tions that can serve a role complementary to conven- 
tional models; they are also called influence diagrams, 
relevance diagrams, or causal networks.4 Such diagrams 
do not incorporate the strong parametric assumptions of 
conventional models; instead, they display assumptions 
about the web of causation that are not captured by 
conventional models. As with conventional models, 
some of the assumptions may be of unknown validity; 
some may be untestable, but others may be tested (albeit 
with limited power) and may be varied to examine the 
sensitivity of inferences to reasonable variations. 

Basics of Graph Construction 
A causal diagram can be constructed by abstracting the 
causal assumptions embedded in a narrative description 
of the hypothesized relations among the study variables. 
To illustrate the idea, consider a proposed study of the 
relation of antihistamine treatment to asthma incidence 
among first-grade children attending various public 
schools. Suppose our narrative asserts that pollution 
levels and sex are independent among first-grade public- 
school children; that sex influences administration of 
antihistamines only through its relation to bronchial 
reactivity but directly influences asthma risks; that in- 
dustrial air pollution leads to asthma attacks only 
through its influence on antihistamine use and bron- 
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FIGURE 1. 

chial reactivity; and that there is no important con- 
founder beyond air pollution, bronchial reactivity, and 
sex. For this example, let A represent air pollution level, 
and let B, C, E, and D represent indicators for sex (B = 
1 for boy, 0 for girl), bronchial reactivity, antihistamine 
treatment, and asthma, respectively. The assertions of 
the narrative are incorporated into Figure 1, which we 
will use to illustrate terminology. 

Any line or arrow connecting two variables in the 
graph is called an arc or an edge. Two variables in a graph 
are adjacent if they are directly connected by an arc; in 
Figure 1, A and C are adjacent, but A and D are not. 
Single-headed arrows represent direct links from causes 
to effects; in Figure 1, the arrow linking A to C repre- 
sents a direct effect of A on C (that is, an effect not 
mediated by another variable in the diagram). In the 
example, the assertion that pollution affects asthma only 
through bronchial reactivity and antihistamine use cor- 
responds to the absence of an arrow from A to D; 
likewise, the assertion that sex affects antihistamine 
administration only through bronchial reactivity corre- 
sponds to the absence of an arrow from B to E. 

The points on the graph representing the variables are 
called nodes or vertices. A path through the graph is any 
unbroken route traced out along or against arrows or 
lines connecting adjacent nodes; an example is the E- 
C-D path between E and D, which passes only through 
C. A directed path from one node to another in the graph 
is one that can be traced through a sequence of single- 
headed arrows, always entering an arrow through the tail 
and leaving through the head; such a path is also called 
a causal path in causal graphs. In Figure 1, the path 
A-C-D is directed, but E-C-D is not. A node within a 
path is said to intercept the path; in Figure 1, C intercepts 
the paths A-C-D and E-C-D. 

A variable X is an ancestor or cause of another variable 
Y if there is a directed path of arrows leading out of X 
into Y; in such a case, Y is said to be a descendant of X or 
affected by X. In Figure 1, A, B, and C are ancestors of E 
and D, and E and D are descendants of A, B, and C. A 
variable X is a parent of Y in a graph if there is a 
single-headed arrow from X to Y; in such a case, Y is said 
to be a child of X or directly affected by X. In Figure 1, A 
and C are parents of E, whereas C and E are children of 
A. 

Note that the "parent-child" relation and the corre- 
sponding notion of "direct effect" are not inherent bio- 

- 
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logic properties, but merely express the limits of detail 
represented in the causal model. For example, to say that 
"antihistamine use E directly affects asthma occurrence 
D" means only that the intermediate steps through 
which antihistamine may alter asthma occurrence (for 
example, by decreasing capture and elimination of anti- 
gens in the upper airways) are not elaborated in the 
model. In contrast, the more general concepts of ances- 
tor and descendant correspond to the basic concepts of 
cause and effect. 

A bidirectional (two-headed) arrow connecting two 
variables in a graph is often used to indicate that the two 
variables share one or more ancestors (that is, have a 
cause in common), but the ancestors and their interre- 
lations are not shown in the graph.6 We will instead 
represent such unspecified common ancestors by the 
letter U, with dashed arrows. U may represent more than 
one variable. For example, if we suspected actions taken 
at high-pollution-area schools reduced pollution expo- 
sure and also independently reduced asthma risk, we 
would use Figure 2 instead of Figure 1; these conditions 
would be satisfied if children were kept indoors on 
high-pollution days, with consequent reduced exposure 
to particulate emissions and allergens. 

A nondirectional arc (an arc without arrowheads) is 
sometimes used to indicate that two variables are asso- 
ciated for reasons other than sharing an ancestor or 
affecting one another; Figure 3 gives an example, which 
we will discuss below. Here, we use dashed nondirec- 
tional arcs to represent relations whose source is not 

A- -- - - - - -B 

E 

specified by the graph. In the example of Figure 1, the 
assertion that pollution exposure and sex are marginally 
unassociated follows from the absence of arcs or com- 
mon ancestors connecting A and B in Figure 1. 

A graph is directed if all arcs between variables are 
arrows (single or double headed), that is, if it contains no 
nondirectional arc. A graph is acyclic (or recursive) if no 
directed path in the graph forms a closed loop. Figures 1 
and 2 are examples of graphs that are directed and 
acyclic. In the present paper we will deal primarily with 
DAGs; we will also discuss other acyclic graphs arising 
from DAGs, such as Figure 3. 

We will also need the following terms. A path that 
connects X to Y is a backdoor path from X to Y if it has an 
arrowhead pointing to X.6 In Figure 1, all paths from E 
to D except the direct path are backdoor paths. A path 
collides at a variable X if the path enters and exits X 
through arrowheads, in which case X is called a collider 
on the path.5 A path is blocked if it has one or more 
colliders; otherwise it is unblocked. The backdoor path 
E-A-C-B-D in Figure 1 is blocked because it collides at 
C; C is the only collider on the path. In contrast, the 
backdoor path E-A-C-D is unblocked because neither A 
nor C are colliders on this path. Either kind of path may 
include nondirectional arcs; for example, the backdoor 
path E-A-B-D in Figure 3 is unblocked. 

Causation and Association in Graphs 
Graphical assumptions are qualitative and nonparamet- 
ric, in that they imply nothing about the specific func- 
tional form of the relations or distributions among the 
variables. In particular, the variables may be discrete or 
continuous, and dose-response relations may have any 
shape. Production of an effect by a cause requires a 
causal path from the cause to the effect, however; such 
paths are represented by directed paths in a graph. Thus, 
absence of a directed path from X to Y represents the 
assumption that there is no effect of X on Y. 

Every absence of a single-headed arrow represents a 
basic null (no-direct-effect) assumption encoded by the 
graph and implies absence of every causal effect that 
would be transmitted through that arrow. For example, 
Figure 1 has no single-headed arrows from A to B, B to 
A, A to D, and B to E (these single-headed arrows are 
the only ones that could be put back in without disrupt- 
ing the acyclic nature of the graph). Thus, the figure 
encodes the basic causal assumptions that A does not 
directly affect B, B does not directly affect A, A does not 
directly affect D, and B does not directly affect E; the 
first assumption also implies that there is no effect of A 
on D that is transmitted through B, and so on. 

In some situations, one may wish to assume that two 
variables have no marginal (crude) association. Al- 
though this assumption would rarely be exactly correct, 
it is often a reasonable working hypothesis; for example, 
it is a common assumption in studies of genetic and 
environmental factors.16 This assumption follows from 
the absence of an unblocked path between the varia- 
bles;3-6 for example, Figure 1 implies that A and B have 
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no marginal association. Put another way, a marginal 
association between two variables in a graph requires 
that there be an unblocked path between them. 

In a DAG, there are only two possible kinds of un- 
blocked paths between variables: directed paths and 
backdoor paths through a shared ancestor. Thus, a mar- 
ginal association between two variables in a DAG re- 
quires that the DAG exhibit a causal pathway from one 
to the other or a common cause of both variables. The 
first condition holds when the association between the 
variables is at least partly causal, and the second condi- 
tion holds when the association is at least partly con- 
founded. Of course, both conditions may hold; that is, 
the marginal association may be partly causal and partly 
confounded, as with E and D in Figure 1. 

The fact that every association between two variables 
X and Y in a DAG is due to either a direct causal 
connection or a common cause may appear to conflict 
with the usual epidemiologic intuitions. For example, 
associations may appear in a study population because of 
biases in selection into the population; Berkson's bias is 
a well-known example.17 The conflict may be resolved 
by noting that the associations generated by selection 
bias are represented by nondirectional arcs, as in Figure 
3; graphs with such arcs are by definition not directed 
graphs. Directed graphs represent only causal relations in 
unselected populations; nonetheless, we will show how 
such graphs can be used to deduce nondirected graphs 
for selected populations, such as Figure 3. 

The independence implied by the absence of un- 
blocked paths between two variables applies regardless of 
the magnitude of any effect or association shown in the 
graph. On the other hand, the presence of an unblocked 
path between two variables allows but does not auto- 
matically imply that the two variables are marginally 
associated. For example, in Figure 1 there is a direct path 
and four backdoor paths between E and D. Although 
each path can induce an association, these associations 
might cancel one another out to yield no marginal E-D 
association. Standard epidemiologic examples occur 
when an effect is hidden by confounding, so that one 
observes no crude association of exposure and disease, 
even though exposure affects disease risk. 

The presence or absence of a blocked path between 
two variables is irrelevant to their marginal association. 
This irrelevance corresponds to the fact that the mar- 
ginal association between two causes of an effect (that is, 
two ancestors of a collider) is fixed by the time both 
causes have occurred, and the association cannot be 
changed by the fact that these causes may trigger a later 
event. For example, if the BRCAI gene and intrauterine 
diethylstilbestrol (DES) exposure are marginally inde- 
pendent of one another, this independence is not 
changed by the fact that later outcomes (such as breast 
cancer) may be affected by both variables. In other 
words, a blocked path cannot contribute to a marginal 
association, because an event cannot alter conditions 
that were determined before the event occurred; in 
particular, breast cancer cannot induce a marginal asso- 
ciation between BRCAI and DES exposure. 

Confounding and Causal Graphs 
There are many different definitions of confounding and 
confounder. Our concern here is with confounding for 
the net (total) effect of exposure, defined as a situation 
in which the study exposure groups (the study groups at 
levels of E) differ in their probability distribution for the 
outcome (D) for reasons other than effects of expo- 
sure.10-12 Inevitably, such differences are attributable to 
effects of extraneous variables (variables other than ex- 
posure) on the distribution of the outcome. The latter 
variables are often called confounders (although the term 
"confounder" is often used more broadly to include prox- 
ies for such variables). A variable that is a hypothetical 
candidate to be a confounder is sometimes called a 
potential confounder. 

Assuming that exposure precedes disease, confound- 
ing will be present if and only if exposure would remain 
associated with disease even if all exposure effects were 
removed, prevented, or blocked.10 This condition is easy 
to check in a DAG that represents the relations among 
exposure, disease, and potential confounders, using the 
following algorithm: 

1. Delete all single-headed arrows emanating from the 
exposure (that is, remove all exposure effects). 

2. In the new graph without exposure effects, see 
whether there is any unblocked path from exposure to 
disease (that is, see whether exposure and disease may 
remain associated even if exposure effects are removed). 

If there is no unblocked path from exposure to disease 
once all the exposure effects are removed, then (accord- 
ing to the graph) there is no confounding of the net 
exposure effect. In a DAG, the task of checking condi- 
tion 2 reduces to that of checking whether the graph 
indicates that exposure and disease share a common 
ancestor. 

Note that effects of disease play no role in the above 
definition. Such effects can only occur after the exposure 
and the disease have occurred. Their irrelevance corre- 
sponds to the fact that, in a DAG, paths from exposure 
to subsequent disease that pass through a descendant of 
disease must also pass through a collider and so are 
blocked. 

CRITERIA FOR CONTROL OF CONFOUNDING 

We wish to present some general criteria that will not 
only allow us to check for confounding, but also give us 
qualitative guidance for confounding control. To do so, 
we will first consider some traditional criteria in a graph- 
ical context, note their shortcomings, and introduce 
new graphical criteria that rectify these shortcomings. 

One conventional set of criteria often considered nec- 
essary although not sufficient for a variable to be a 
confounder can be phrased as follows: (1) the variable is 
an ancestor (cause) of the outcome, and (2) the variable 
is associated with exposure, but (3) the variable is not a 
descendant (effect) of the exposure or outcome.12'13 
With these criteria in mind, we presented Figure 1 to 
various colleagues and students, with the question, "As- 
suming the graph is correct for our study population- 
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TABLE 1. Numerical Example of How Independent Vari- 
ables (A and B) Can Appear Associated within Strata of a 
Variable That They Both Affect (C) 

A= A= 0 

B= 1 B=0 B= 1 B=0 

C = 1 800 600 400 200 
C = 0 200 400 600 800 
Total 1,000 1,000 1,000 1,000 

that is, that there is no direct effect of A on D or B on 
E, that A and B are independent, and that there is no 
other confounder-what is the smallest subset from the 
covariates A, B, and C that would be sufficient for 
adjustment to estimate the effect of E on D without 
bias?" By far, the most common response we encoun- 
tered was that A alone or B would not be sufficient, but 
that C alone would be sufficient. 

Typically, the reasoning about Figure 1 went as fol- 
lows: "Adjustment for A and B would leave C as a 
confounder. But because C intercepts the path from A to 
D, its control would render A unassociated with D given 
E. Similarly, because C intercepts the path from B to E, 
its control would render B unassociated with E. There- 
fore, once we adjust for C, A and B would fail to satisfy 
one of the necessary criteria required of confounders, 
and so adjustment for C would control confounding by 
A and B as well as C." Although this reasoning contains 
a core of wisdom, it turns out that adjustment for C 
alone is not sufficient for control of confounding in 
Figure 1. This insufficiency indicates that a naive read- 
ing of the graph is inadequate. 

There is, however, a chain of reasoning that would 
have allowed us to answer the question correctly. First, 
A and B have no marginal (crude) association under 
Figure 1, because A and B share no common ancestor 
that would produce covariation between them. Second, 
A would have to be associated with C given B because 
A affects C; similarly, B would have to be associated 
with C given A. Thus, when we stratify on C, the 
association of A and B within at least one stratum of C 
will almost certainly differ from the crude A-B associa- 
tion; in particular, it will almost certainly not be null in 
all strata of C, or in an overall summary across strata of 
C. (By "almost certainly," we mean that exceptions can 
occur in special examples involving perfect cancella- 
tions across strata of a polytomous C.'8) 

Table 1 provides a numerical example. Here, we as- 
sume that A = 1 and B = 1 each occur in 50% of a 
population of size 4,000 in which Figure 1 holds, and 
that A and B are marginally unassociated (that is, they 
are unassociated in the bottom margin of the table). We 
also assume that having A = 1 always adds 40% to the 
risk of C = 1, while having B = 1 always adds 20% to 
the risk of C = 1, so that the effects of A and B exhibit 
no interaction on an additive-risk scale. If we now look 
within strata of C (that is, within rows C = 1 and C = 
0), we see that A and B are associated; for example, the 

odds ratio for the A-B association is 2/3 within strata of 
C. 

One may view the preceding example as a variation 
on Berkson's bias.17 In Berkson's original example, A 
and B were indicators of lung cancer and tuberculosis, 
whereas C was an indicator of hospital admission. Berk- 
son showed that, if A and B were independent in the 
general population and had probabilistically indepen- 
dent effects on admission C, then A and B would be 
associated among the hospital admittees, who compose 
the C = 1 stratum.17 Note that recognition of this bias 
requires consideration of the original DAG for the entire 
population; one could not recognize the in-hospital as- 
sociation of A and B as biased if one considered only the 
hospital data. 

The preceding example corresponds to a general rule 
about causal relations: Suppose two variables A and B 
both affect a third variable C (that is, C is a descendant 
of A and B). Then the association of A and B within 
strata of C will almost certainly differ from the marginal 
association of A and B. This rule has long been recog- 
nized in epidemiologic problems in which the effect of A 
on B is of interest7'13''5; it is known as the "explaining 
away" effect in artificial-intelligence research.19 Apply- 
ing the rule to Figure 1, in which the effect of E on D is 
of interest, we see that adjustment for C can create an 
unblocked backdoor path from E to D that circumvents 
C: the association of A and B within strata of C can 
create an association of A with D indirectly, through B; 
it can also create an association of B with E indirectly, 
through A. 

Figure 3 illustrates the situation within strata of C. By 
creating an association between A and B, adjustment for 
C has generated a new unblocked backdoor path from E 
to D (the path E-A-B-D). Because B is now associated 
with E, B now satisfies the earlier (conventional) con- 
founder definition, so that control of B appears necessary 
once C is controlled. We will see below, however, that 
control of B is not necessary given Figure 1; instead, B 
and C are sufficient to control confounding, but A and C 
would do as well. We will also present an algorithm that 
will allow us to identify sufficient confounder sets using 
simple manipulations of the original graph (Figure 1). 

We may generalize what we have illustrated so far. 
Suppose each of several variables satisfies the conven- 
tional definition of a confounder, such as A, B, and C in 
Figure 1. By controlling a subset of these variables, we 
may alter the associations among the remaining vari- 
ables; in particular, we may create new associations 
among the remaining variables, the exposure, and the 
disease. These new associations can produce new un- 
blocked paths between E and D and thus can create (as 
well as control) confounding. Consequently, intuitions 
based on situations involving only one confounder can 
be an inadequate guide in situations involving multiple 
confounders. 

STRATIFICATION UNDER A MULTIPLICATIVE MODEL 

A striking contrast of the parametric focus of conven- 
tional methods vs the nonparametric focus of graphical 
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methods arises in considering case-only studies of "gene- 
environment interactions."20'21 Suppose two factors are 
marginally independent, as in the BRCAI-DES example 
above; then, if their effects are multiplicative, there will 
be no association of the factors among the cases. As a 
consequence, if biases are absent and the factors are 
independent in the source population giving rise to the 
cases, an association of the factors among the cases has 
to be attributed to a departure from multiplicativity of 
the factor effects.20'21 

The rationale for a case-only study is that, under a 
multiplicative model, unbiased selection into the case- 
only study should yield a population (comprising only 
cases) with no association of the factors. Nonetheless, in 
keeping with the earlier graphical results, the noncases 
left behind will exhibit an association of the factors 
(albeit a weak one if the disease is rare). That is, the 
association induced by stratifying on the outcome will be 
entirely concentrated among the noncases if the factors 
are marginally independent and have multiplicative ef- 
fects on disease. 

In a real application of the case-only design, one 
should consider whether there is any scientific basis for 
focusing on a multiplicative model form, which is after 
all just one of an infinitude of possible model forms. As 
Table 1 shows, marginally independent factors may be 
strongly associated among cases under other reasonable 
"no-interaction" models. 

PHYSICAL VS ANALYTIC CONTROL OF CONFOUNDING 

The failure of intuitions in the above examples may arise 
because common intuitions about confounding control 
arise from experiments, in which "control" may mean 
direct physical control (manipulation) of a variable. In a 
structure such as that in Figure 1, successful experimen- 
tal control of C could mean that the investigator phys- 
ically prevents C from varying in response to variations 
in A, B, or any other variables. As a result, A and B 
would no longer have effects on E or D that are mediated 
through C. For example, if A were weight, B were 
apolipoprotein E genotype, C were serum cholesterol, E 
were blood pressure, and D were cardiovascular disease, 
then effective medical control of cholesterol would 
block those effects of weight and genotype that are 
mediated through serum cholesterol. The result of such 
medical control would be a diagram like that in Figure 4, 
in which the arrows from A to C and B to C are erased 
or cut. In this new diagram, with C controlled by inter- 
vention, there is no confounding by A or B, hence, the 
common intuition that control of C is sufficient to 
control confounding, given Figure 1. (Of course, in 
reality the available interventions would weaken but not 
eliminate the effects of A and B on C.) 

By definition, physical blocking of a path is not an 
option in observational studies. Instead, we can only 
"control" C in a data-analytic sense of adjustment; that is, 
we restrict our analyses (and perhaps our data collec- 
tion) to a stratum of C; we may then combine results 
across different strata or employ some regression ana- 

A B 

C 

E ED 
FIGURE 4. 

logue of this process. Unfortunately, analytic adjustment 
for C has consequences quite different from those of 
physical control. With adjustment for C, we must shift 
our attention from the crude A-B association to the A-B 
associations within strata of C. In doing so, we descend 
into strata of C, in which A and B can be associated (as 
in Figure 3), even though they have no cause (ancestor) 
in common and hence have no association in the orig- 
inal directed graph. 

UNNECESSARY ADJUSTMENT AND HARMFUL ADJUSTMENT 

Improper adjustment for a third variable can create 
confounding even when exposure and disease share no 
common cause. Figure 5 gives an example; here, A and 
C have no effect on D other than through E, and B and 
C have no effect on E. As in Figure 1, however, A and 
B would be associated within strata of C; hence, if one 
adjusted for C, one would have to adjust for A or B to 
ensure that there is no confounding within the strata. 

There is a broader lesson in Figure 5. Given that 
diagram, there is no confounding and hence no need to 
adjust for C, because there is no unblocked backdoor 
path from E to D. We can nonetheless make A and B 
into confounders by adjusting for C. Thus, given Figure 
5, unconfounded answers can be obtained by adjusting 
for nothing or by adjusting for anything other than C 
alone. More generally, adjustment for variables (such as 
C in Figure 5) that are not necessary to control may 
necessitate adjustment for even more variables. 

Now consider Figure 6, in which we observe a variable 
F that is affected by E and D. There is no confounding of 
the effect of E on D in this diagram. Thus, given the 

A B 

C 

V 
E 

FIGURE 5. 

V 

42 GREENLAND ET AL 



CAUSAL DIAGRAMS FOR EPIDEMIOLOGIC RESEARCH 43 

E D 

F 
FIGURE 6. 

diagram, the crude association of E and D should repre- 
sent the effect of E on D without bias, and adjustment 
for F is unnecessary. Furthermore, because F is associated 
with both E and D, the associations of E and D with 
strata of F would differ from the crude association and 
hence differ from the true effect; that is, they would be 
biased. This situation is similar to that of adjustment for 
C in Figure 5, except that there is no other variable to 
control that would remove the bias. Thus, adjustment 
for F is not only unnecessary but irremediably harmful 
(biasing). 

A classic example of adjustment-induced bias oc- 
curred when, in studies of estrogen (E) and endometrial 
cancer (D), some researchers attempted to control for 
detection bias by stratifying on uterine bleeding (F), 
which could be caused by either estrogen or cancer, as in 
Figure 6. The association between estrogen and cancer 
within levels of bleeding was drastically reduced by this 
stratification; unfortunately, the reduction was more 
plausibly attributable to bias produced by stratification 
than to removal of detection bias.15 

Another important example of adjustment-induced 
bias can occur in attempts to adjust for the "healthy- 
worker survivor effect."7 This effect is the bias that 
occurs when unmeasured health conditions (U) influ- 
ence decisions to leave work (for example, quit, take 
disability leave, or retire) and also influence mortality 
(D); when this happens, leaving work may become as- 
sociated with mortality, even if it has no effect on 
mortality. Suppose the study exposure (E) is job-site 
assignment, which influences worker decisions about 
when to leave work (L). Figure 7 illustrates such a 
scenario. In this figure, there is no confounding of the 
E-D association, so that the crude association is unbi- 
ased. Because L is associated with E and D, however, 
control of L would most likely yield an E-D association 
different from the crude and therefore would be harmful. 

U 
/ \ 

// E \ 

L D 
FIGURE 7. 

SUFFICIENT SETS OF ADJUSTMENT VARIABLES 

Suppose now that we have laid out our working assump- 
tions about causal relations in a DAG, and we wish to 
estimate the effect of E on D, where E and D are 
variables in the graph and E temporally precedes D. We 
know that adjustment for a variable can produce bias if 
the variable is a descendant of E. We have also seen that 
adjustment for a variable along a backdoor path from E 
and D can produce bias if that variable is a collider along 
the path, as C was in Figure 5. This finding is a subtle 
insight about analytic control added by causal graph 
theory, and we must account for it in revising conven- 
tional criteria for adjustment. 

Suppose we have a set S of variables that we are 
considering for use in adjustment. We will refer to the 
strata defined by cross-classification on all of the vari- 
ables in S as "strata of S". We define a set of variables S 
as sufficient for confounding adjustment of the E-D relation 
if there is no confounding of the E-D relationship in any 
stratum of S. Our usage of "sufficient" will thus refer only 
to control of confounding. Concerns about possible het- 
erogeneity of effect measures (effect-measure modifica- 
tion) may dictate finer stratification than that sufficient 
for confounding adjustment. For example, in a large 
randomized trial, one may have no concern about con- 
founding, in that the unadjusted (crude) estimates may 
be unconfounded summary effect estimates; nonetheless, 
one may wish to look for possible differences in effects 
among men and women, young and old patients, etc. 

GRAPHICAL CRITERIA 

Given a DAG and a set S of variables in the graph that 
are not descendants (effects) of E or D, it can be shown 
that S is sufficient for adjustment if, upon adjustment for 
S, there is no unblocked backdoor path from E to D.6 
This condition is equivalent to the following pair of 
graphical criteria: 

G1. Every unblocked backdoor path from E to D is 
intercepted by a variable in S, and 

G2. Every unblocked path from E to D induced by 
adjustment for the variables in S is intercepted by a 
variable in S. 

Criterion G2 is the key addition to conventional 
wisdom. At first glance, it might seem difficult to verify 
that this criterion is satisfied; fortunately, it is equivalent 
to the following operational criterion: 

G2*. If every collider on a backdoor path from E to D 
is either in S or has a descendant in S, then S must also 
contain a noncollider along that path.6 

In Figures 1 and 5, the set containing only C does not 
satisfy this criterion, whereas the sets {A, C} and {B, C} 
do. 

The above criteria lead to a graphical (and hence 
visual) algorithm for checking whether a set of variables 
is sufficient for adjustment given a particular DAG. This 
algorithm is known as the backdoor test for sufficiency.22 
This test may be performed as follows. Given a subset 
S = {S1, . . , Sn} of variables that contains no descen- 
dant of E or D, perform the following series of manipu- 
lations (steps) on the original graph: 
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M1. Delete all arrows emanating from E (that is, 
remove all exposure effects); 

M2. Draw undirected arcs to connect every pair of 
variables that share a child that is either in S or has a 
descendant in S (that is, put in all arcs generated by 
control of S); and 

M3. In the new graph derived from steps Ml and M2, 
see whether there is any unblocked path from E to D 
that does not pass through S. 

S is sufficient if the answer to M3 is negative, that is, 
if every unblocked path from E to D in the graph 
resulting from Ml and M2 passes through S. 

Applying Ml and M2 to Figure 1 with S = {A, C}, 
S = {B, C}, or S = {C} yields Figure 8. In this figure, 
every path from E to D passes through {A, C}, so {A, C} 
is sufficient; however, the unblocked path E-A-B-D does 
not pass through C, so {C} is not sufficient. Applying Ml 
and M2 to Figure 5 with S = {C} yields Figure 9, in 
which the unblocked path E-A-B-D does not pass 
through C, so {C} is not sufficient. Applying M1 and M2 
to Figure 5 with S = {} (the empty set) yields Figure 10, 
in which there is no unblocked path from E to D; thus, 
we need not adjust for anything given Figure 5. 

When a graph contains many variables, it may be- 
come tedious to carry out M3. The back-door test may 
be simplified as follows. After we adjust for a set S, any 
unblocked backdoor path can only pass through vari- 
ables that are ancestors of E, D, or a variable in S. 
Therefore, before applying the test, we may simplify the 
graph by dropping all variables outside of E, D, and S 
that are not ancestors of E or D or a variable in S.23 This 
simplification may considerably reduce the number of 
backdoor paths from E to D. Applying this simplification 

to Figure 5 with S = {} leads us to drop C from the graph. 
Dropping C yields Figure 11, in which there is no back- 
door path from E to D. Thus, the empty set is sufficient 
to adjust for confounding in Figure 5, which is to say that 
there is no confounding in the figure. This is so, even 
though C would almost certainly be marginally associ- 
ated with E and associated with D conditional on E, and 
so it would appear to be a confounder of the E-D effect 
if A and B were ignored. 

MINIMAL SUFFICIENCY 
A set of variables may be sufficient for adjustment, but it 
may be unnecessary to adjust for all of the variables in 
the set. A set S of variables is minimally sufficient for 
adjustment if S is sufficient but no proper subset of S is 
sufficient. In Figure 1, both {A, C} and {B, C} are 
minimally sufficient sets, because some control is neces- 
sary and no single variable is sufficient for control. On 
the other hand, although {A, C} and {B, C} are both 
sufficient in Figure 5, neither is minimally sufficient, 
because no control is necessary (that is, the empty set is 
also sufficient). To find a minimally sufficient set, we 
may sequentially delete variables from a sufficient set 
until no more can be dropped without the new set failing 
the backdoor test.24 

It is important to recognize that a set S may be 
sufficient for confounding adjustment, and yet adding 
variables to S may yield a set S* that is not sufficient. In 
other words, control of a set of variables may yield an 
unbiased measure of effect, and yet control of more 
variables may create bias.6'1l Figure 5 is a simple example 
of this phenomenon, in which no control (S = {}) is 
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sufficient, and yet control of C (S* = {C}) is not suffi- 
cient. 

It is also important to recognize that there may be 
several different minimally sufficient sets, which may 
not even overlap with one another, and which may be 
quite disparate in size and in difficulty of measurement. 
Figure 12 provides an example in which all of the causes 
of D are associated with E only through a final common 
path that passes through F. Both {A, B, C} and {F} are 
minimally sufficient but have no variable in common. 

GRAPHICAL SEPARATION 
The graphical criteria for sufficiency (criteria 1-3 above) 
involve a more general graphical concept that will prove 
useful in evaluating confounding criteria and variable 
subsets. We say a set of variables S separates two other 
sets R and T, or S blocks every path between R and T, if 
the following criteria are met: 

S1. Every unblocked path from R to T is intercepted 
by a variable in S, and 

S2. Every unblocked path from R to T generated by 
adjustment for the variables in S is intercepted by a 
variable in S. 

(This concept is usually called "d-separation of R and 
T by S" in the graphical literature,3'5'6 where d stands for 
"directional".) With this definition, we can say that S is 
sufficient for control of confounding under a given DAG 
if S contains no descendants of E or D, and S separates 
E from D in the graph obtained by deleting all arrows 
emanating from E. Thus, in Figure 8 (which is Figure 1 
with the E-D arrow deleted), the set {A, C} separates the 
set {E} from the set {D}, and so does the set {B, C}, but the 
set {C} does not. In Figure 12, the set {F} separates {E} 
from {D} once the E-D arrow is deleted, and so does the 
set {A, B, C}. 

The concept of separation is useful beyond the back- 
door test, because it implies the statistical concept of 
stratum-specific independence: if S separates R and T, 
then every variable in R is unassociated with every 
variable in T within strata of S.3'5'6'25 For example, in 
Figure 8, {A, C} separates {E} from {D}, and hence, under 
this graph, E and D are unassociated within A-C strata. 

Although the converse is not necessarily correct, the 
exceptions involve perfect cancellations of associations 
and so may be of little practical relevance in epidemi- 
ology. 

Connection of Graphical and Statistical Criteria 
Suppose that we have partitioned a sufficient subset of 
potential confounders in a problem into two subsets S 
and T, where no variable in S or T is affected by E or D. 
Although there is some variation in details, criteria 
based on statistical associations are often used to decide 
whether to treat S alone as sufficient for adjustment. 
Commonly, S is treated as sufficient if every potential 
confounder C in T satisfies at least one of the following 
criteria: 

U1. C and E are unassociated (independent) within 
the strata defined by S; or 

U2. C is unassociated with D within the strata defined 
by E and S. 

For example, if S = {age, sex}, T = {birth year}, E = 
smoking, and D = myocardial infarction (MI), the cri- 
teria say that birth year need not be controlled once age 
and sex are controlled if either (1) smoking and birth 
year are unassociated within age-sex strata or (2) MI 
incidence and birth year are unassociated within smok- 
ing-age-sex strata. 

Some authors use a less restrictive version of criterion 
U2, in which C is unassociated with D among the 
unexposed. Such usage is justifiable if the effect measures 
of interest refer or are standardized to the exposed pop- 
ulation, as is often assumed.10'11,26 Our version is needed, 
however, if one wishes C to be unnecessary regardless of 
which standard (reference) distribution is chosen.12 

Consider the statistical criteria applied to Figure 1 
with S = {C} and T = {A, B}. Apart from examples with 
perfect cancellation, the above criteria would detect the 
insufficiency of S. For example, within strata of C, E and 
A are associated because A affects E; and, within E-C 
strata, A is associated with D because A would be 
associated with B and B affects D. 

Now consider Figure 5 with S = {} (the empty set) and 
T = {A, B, C}. Apart from examples with perfect can- 
cellation, the above statistical criteria would fail to de- 
tect the sufficiency of S (that is, that no control is 
necessary), because C fails both criteria; E and C would 
be associated because both are affected by A; and C and 
D would be associated within strata of E because both are 
affected by B. Thus, the usual criteria for evaluating a set 
of confounders do not correspond perfectly with the 
graphical test; the criteria may not identify all of the 
sufficient sets and, in particular, may fail to identify 
minimally sufficient sets. 

It is possible, however, to generalize the usual statis- 
tical criteria so that they identify all of the sufficient sets 
found by the backdoor test (see corollary 4.1 of Robins9). 
Suppose that S and T together are sufficient for adjust- 
ment. Then T will be unnecessary given S if T can be 
decomposed into two disjoint subsets T1 and T2 such 
that, within strata of S, both of the following criteria are 
met: 
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U *. T, is unassociated with E within strata defined 
by S; and 

U2*. T2 is unassociated with D within strata defined 
by E, S, and T1; 

Note that variables in T, may be associated with 
variables in T2; the criteria do require, however, that T1 
and T2 have no variable in common and that all vari- 
ables in T appear in either T1 or T2. To apply these 
criteria, we may begin by taking T, to be the largest 
subset of S that is independent of E and so satisfies U 1*; 
we then check to see whether T2 = T - T,, the remain- 
der of T after deleting T1, satisfies U2*. 

Whereas the usual approach requires either criterion 
U1 or U2 to hold for each variable in T to ignore T, we 
require both criteria UI* and U2* to hold. When con- 
sidering just one variable beyond S, however, criteria U1 
and U2 are special cases of criteria U1* and U2*. To see 
this fact, first note that the empty set {} is unassociated 
with everything (because it defines no strata), and hence 
it vacuously satisfies both UI* and U2*. Hence, if C 
satisfies criterion U1, T = {C} satisfies criteria U * and 
U2* with T, = {C} and T2 = {}; if C instead satisfies 
criterion U2, T = {C} satisfies criteria Ul* and U2* 
with T, = {} and T2 = {C}. 

As an example, suppose S = {age, sex}, T = {birth 
year, height}, E = smoking, and D = MI. Then criteria 
UI* and U2* imply that neither birth year nor height 
need be controlled if any one of the following four 
conditions hold: 

1. Within age-sex strata, smoking is unassociated with 
the compound variable birth year-height (T, = {birth 
year, height}, T2 = {}); 

2. Within smoking-age-sex strata, the compound vari- 
able birth year-height is unassociated with MI (T, = {}, 
T2 = {birth year, height}); 

3. Smoking and birth year are unassociated within 
age-sex strata, and height and MI are unassociated 
within smoking-age-sex-birth year strata (T, = {birth 
year}, T2 = {height}); or 

4. Smoking and height are unassociated within age- 
sex strata, and birth year and MI are unassociated within 
smoking-age-sex-height strata (T1 = {height}, T2 = 
{birth year}). 

Each of these conditions is sufficient, even if birth 
year is associated with height. 

Consider again Figure 5 with S = {} and T = {A, B, 
C}. Using T1 = {B} and T2 = {A, C}, we may show that 
T satisfies criteria UI* and U2* and that S (no adjust- 
ment) is sufficient. First, B and E are unassociated, so 
U1* is satisfied; second, within E-B strata, A-C is unas- 
sociated with D, so U2* is satisfied. 

The preceding example illustrates a general theorem 
linking graphical and associational criteria. Suppose we 
have disjoint sets of variables S and T in a DAG that 
contain no descendant of E or D and together satisfy the 
backdoor test; then S alone satisfies the backdoor test 
only if T can be partitioned into disjoint subsets that 
satisfy criteria U1* and U2*.927 Thus, graphical suffi- 
ciency implies satisfaction of our generalized statistical 
criteria. The advantage of the graphical approach is that 

X^ )Y 
FIGURE 13. 

it offers a straightforward visual means of checking cri- 
teria, at least in moderate-sized graphs, and it translates 
into an efficient algorithm for finding minimally suffi- 
cient subsets of control variables.6'22 This algorithm does 
not depend on quantitative information and so can be 
applied in the design as well as the analysis stage of a 
study, as well as to situations in which some key poten- 
tial confounders have not been measured. The graph 
also clearly displays the essential assumptions for the 
algorithm, such as the assumptions that S and T contain 
no variable affected by E or D. 

It is possible for S and T to satisfy U1* and U2* even 
though S fails the backdoor test. In such a case S would 
still be sufficient for adjustment; thus, the backdoor test 
does not identify all sufficient subsets in all settings. 
Nonetheless, these cases involve perfect cancellations of 
associations and so may be of little practical relevance 
for epidemiology. 

In a subsequent paper, we hope to discuss the relation 
of graphical criteria for nonconfounding to exchange- 
ability and collapsibility criteria.10-12,26 Briefly, if S and T 
satisfy Ul* and U2*, then the different exposure groups 
will be exchangeable within strata of S, and both the risk 
difference and risk ratio (but not necessarily the odds 
ratio) will be collapsible over T.9 Thus, if S passes the 
backdoor test there will be no confounding within strata 
of S, and, given stratification on S, T will contain no 
confounder according to the definitions in our previous 
writings.",'12,26 

Discussion 
A closed loop in a causal diagram represents reciprocal 
causation (feedback). Graphs with such loops are called 
cyclic or nonrecursive. We have limited our discussion to 
acyclic graphs, because cyclic graphs are interpretable as 
shorthand representations of acyclic graphs with multi- 
ple time-specific measurements of the variables. For ex- 
ample, the statement "X can cause Y and Y can cause X" 
could be represented in a cyclic graph as simple as Figure 
13. Nonetheless, because causes must precede effects, 
the statement can only be meaningfully interpreted as 
saying that "the occurrence of X can cause a subsequent 
occurrence of Y, and vice versa." An acyclic represen- 
tation of this statement requires time-specific versions of 
each variable, such as in Figure 14. Cyclic graphs can 
have a deceptively simple appearance relative to the 
complex time-dependent processes they represent. With 
proper translation into acyclic form, however, such 
graphs can be analyzed using the methods given here; 
such translation will also reveal exactly what time-series 
of measurements are needed for unconfounded effect 
estimation. For discussions of graphical methods for 
time-dependent variables and direct effects, see Robins9 
and Pearl and Robins.27 
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Causal diagrams provide results equivalent to those 
obtainable using the more established counterfactual 
causal models of philosophy28 and statistics29; see Rob- 
ins8'9 and Galles and Pearl30 for descriptions of the con- 
nection. Although we have found counterfactual models 
useful in our previous work,7'" graphical models seem to 
have a broad intuitive appeal, and we are enthusiastic 
about their use in teaching principles for identification 
and control of confounding. Nonetheless, we must em- 
phasize that no approach solves the central epistemo- 
logic problem of inferring causation from nonexperi- 
mental (observational) data. As realized by Hume 
centuries ago and reinforced by many authors 
since,26'28'29 all causal inference is based on assumptions 
that cannot be derived from observations alone. 

Even if we obtain randomized-trial data, we must 
assume that no bias occurred in allocation and compli- 
ance, or that any such bias can be handled by adjustment 
procedures; such assumptions are not always correct. In 
nonexperimental studies, our inferences are further lim- 
ited by assumptions (often wishful) that we have ade- 
quately measured all of the important selection and 
confounding factors. Graphs can only help convey those 
assumptions and indicate what measurements are suffi- 
cient for adjustment, given those assumptions. 

Because the graphical techniques used in this paper 
presume a qualitative understanding of the causal struc- 
ture behind the data, they are less ambitious than those 
used in some of the graphical literature, which attempt 
to infer such structures from data.5'31,32 The methods used 
for such inferences involve assumptions that may not be 
warranted in typical epidemiologic studies. Full descrip- 
tions and critiques of these methods are somewhat in- 
volved and appear elsewhere.59331-37 Because the meth- 
ods are highly controversial, their use for drawing 
inferences (such as in the TETRAD software of 
Scheines et a132) should be cautioned by awareness of the 
controversy. 

We have limited our presentation to graphical anal- 
yses of confounding. Of equal or greater importance to 
validity are problems of measurement error, which in 
most cases (and contrary to popular lore) cannot be 
validly handled by simple approaches, such as stratifica- 
tion on indicators of "information quality."38 Graphs 
can, however, be used to convey and analyze assump- 
tions about measurement processes. Important applica- 
tions arise when a measurement can be affected by 
variables other than the one supposedly being measured. 
As a simple example, consider a case-control study of 
sleep position E and sudden infant death syndrome D. 

Suppose the measurement of E is parental response F to 
a question about sleep position; response bias would then 
correspond to the presence of an arrow from the study 
outcome D to the exposure measurement F, as in Figure 
6. In a future article, we hope to describe the application 
of graphical models to validity questions that involve 
simultaneous consideration of different sources of bias. 

In closing, we wish to emphasize that the methods we 
have discussed are purely qualitative and so do not 
address the quantitative problem of determining how 
much control is necessary to reduce bias to an acceptable 
level. Such determinations require much more informa- 
tion than demanded for purely graphical analysis, such as 
information about strength of associations among con- 
founders and exposure, as well as strength of confounder 
effects on disease. This information is rarely known with 
any accuracy; as a consequence, estimates of residual bias 
are rarely if ever accurate. One way to address this 
problem is to conduct a sensitivity analysis of bias,9'39-41 
although such analyses may themselves depend on and 
hence be sensitive to various simplifying assumptions.42 
These issues exemplify the complexities one can expect 
to encounter in a quantitative analysis of bias. 
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