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Predicting poverty and wealth from
mobile phone metadata
Joshua Blumenstock,1* Gabriel Cadamuro,2 Robert On3

Accurate and timely estimates of population characteristics are a critical input to social
and economic research and policy. In industrialized economies, novel sources of data are
enabling new approaches to demographic profiling, but in developing countries, fewer
sources of big data exist.We show that an individual’s past history of mobile phone use can
be used to infer his or her socioeconomic status. Furthermore, we demonstrate that the
predicted attributes of millions of individuals can, in turn, accurately reconstruct the
distribution of wealth of an entire nation or to infer the asset distribution of microregions
composed of just a few households. In resource-constrained environments where censuses
and household surveys are rare, this approach creates an option for gathering localized
and timely information at a fraction of the cost of traditional methods.

R
eliable, quantitative data on the economic
characteristics of a country’s population are
essential for sound economic policy and
research. The geographic distribution of
poverty and wealth is used to make de-

cisions about resource allocation and provides
a foundation for the study of inequality and the
determinants of economic growth (1, 2). In devel-
oping countries, however, the scarcity of reliable
quantitative data represents a major challenge to
policy-makers and researchers. Inmuch of Africa,
for instance, national statistics on economic pro-
duction may be off by as much as 50% (3). Spa-
tially disaggregated data, which are necessary
for small-area statistics and which are used by
both the private and public sector, often do not
exist (4, 5).
In wealthy nations, novel sources of passively

collected data are enabling new approaches to
demographic modeling and measurement (6–8).
Data from social media and the “Internet of
Things,” for instance, have been used to measure

unemployment (9), electoral outcomes (10), and
economic development (8). Although most com-
parable sources of big data are scarce in the
world’s poorest nations, mobile phones are a no-
table exception: They are used by 3.4 billion
individualsworldwide and are becoming increas-
ingly ubiquitous in developing regions (11).
Hereweexaminetheextent towhichanonymized

data from mobile phone networks can be used to
predict the poverty and wealth of individual
subscribers, as well as to create high-resolution
maps of the geographic distribution of wealth.
That this may prove fruitful is motivated by the
fact that mobile phone data capture rich infor-
mation, not only on the frequency and timing of
communication events (12) but also reflecting
the intricate structure of an individual’s social
network (13, 14), patterns of travel and location
choice (15–17), and histories of consumption and
expenditure. Regionally aggregated measures of
phone penetration and use have also been shown
to correlate with regionally aggregated popula-
tion statistics from censuses and household sur-
veys (8, 18, 19).
Our approach is different from prior work that

has examined the relationbetween regionalwealth
and regional phone use, as we focus on under-
standing how the digital footprints of a single indi-
vidual can be used to accurately predict that same

individual’s socioeconomic characteristics. This
distinction is a scientific one, which also has sev-
eral important implications: First, it allows for
themethod to be used in contexts forwhich recent
census or household survey data are unavailable.
Second, when an authoritative source of data does
exist, it can be used tomore objectively validate or
refute the model’s predictions. This limits the
likelihood that themodel is overfit on data from
a single source, which is otherwise difficult to
control, even with careful cross-validation (20).
Third, our approach allows for a broad class of
potential applications that require inferences
about specific individuals instead of census tracts.
As we discuss in the supplementary materials
(section 6), future iterations of this approach could
help to improve the targeting of humanitarian
aid and social welfare, disseminate information
to vulnerable populations, and measure the ef-
fects of policy interventions.
For this study, we used an anonymized data-

base containing records of billions of interactions
on Rwanda’s largest mobile phone network and
supplemented this with follow-up phone surveys
of a geographically stratified random sample of
856 individual subscribers. Upon contacting and
surveying each of these individuals, we received
informed consent tomerge their survey responses
with the mobile phone transaction database. The
surveys solicited no personally identifying in-
formation but contained questions on asset owner-
ship, housing characteristics, and several other
basic welfare indicators. From these data, we
constructed a composite wealth index using the
first principal component of several survey re-
sponses related to wealth (21, 22) (supplemen-
tary materials section 1D). For each of the 856
respondents, we thus have ~75 survey responses,
as well as the historical records of thousands of
phone-based interactions such as calls and text
messages (Table 1).
We use the merged data from this sample of

856 phone survey respondents to show that a
mobile phone subscriber’s wealth can be pre-
dicted from his or her historical patterns of
phone use (Fig. 1A) (cross-validated correlation
coefficient r = 0.68). Our approach to modeling
combines feature engineering with feature selec-
tion by first transforming each person’s mobile
phone transaction logs into a large set of quan-
titative metrics and then winnowing out metrics
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Table 1. Summary statistics for primary data sets. Phone survey data were collected by the authors in Kigali, in collaboration with the Kigali Institute of
Science and Technology. Call detail records were collected by the primary mobile phone operator in Rwanda at the time of the phone survey. Demographic
and Health Survey (DHS) data were collected by the Rwandan National Institute of Statistics. N/A, not applicable.

Summary statistic Phone survey Call detail records
DHS

(2007)
DHS

(2010)

Number of unique individuals 856 1.5 million 7377 12,792
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .

Data collection period July 2009 May 2008–May 2009 Dec. 2007–Apr. 2008 Sept. 2010–Mar. 2011
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .

Number of questions in survey 75 N/A 1615 3396
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .

Primary geographic units 30 districts 30 districts 30 districts 30 districts
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .

Secondary geographic units 300 cell towers 300 cell towers 247 clusters 492 clusters
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .
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Fig. 1. Predicting survey responses with phone data. (A) Relation between actual wealth (as reported in a phone survey) and predicted wealth (as inferred from
mobile phone data) for each of the 856 survey respondents. (B) Receiver operating characteristic (ROC) curve showing the model’s ability to predict whether the
respondent owns several different assets. AUC values for electricity,motorcycle, television, and fridge, respectively, are as follows: 0.85,0.67,0.84, and0.88. (C) ROC
curve illustrates the model’s ability to correctly identify the poorest individuals. The poor are defined as those in the 5th percentile (AUC = 0.72) and the 25th
percentile (AUC = 0.81) of the composite wealth index distribution.

Fig. 2. Construction of high-resolution maps of poverty and wealth from call records. Information derived from the call records of 1.5 million
subscribers is overlaid on a map of Rwanda.The northern and western provinces are divided into cells (the smallest administrative unit of the country), and
the cell is shaded according to the average (predicted) wealth of all mobile subscribers in that cell.The southern province is overlaid with a Voronoi division
that uses geographic identifiers in the call data to segment the region into several hundred thousand small partitions. (Bottom right inset) Enlargement of
a 1-km2 region near Kiyonza, with Voronoi cells shaded by the predicted wealth of small groups (5 to 15 subscribers) who live in each region.

RESEARCH | REPORTS



that are not predictive of wealth. The first step
employs a structured, combinatorial method to
automatically generate several thousand metrics
from the phone logs that quantify factors such as
the total volume, intensity, timing, and direc-
tionality of communication; the structure of the
individual’s contact network; patterns of mobil-
ity and migration based on geospatial markers
in the data; and so forth. The second step uses
“elastic net” regularization to eliminate irrelevant
phone metrics and select a parsimonious model
that is more likely to generalize (23). We use
cross-validation to limit the possibility that the
model is overfit on the small sample on which it
is trained. In the supplementary materials (sec-
tion 3B), we provide details on these methods
and show that comparable results are obtained
under a variety of alternative supervised-learning

models, including tree-based ensemble regres-
sors and classifiers (24). We also show that this
two-step approach to feature engineering and
model selection performs significantly better than
a more intuitive approach based on a small num-
ber of hand-crafted metrics (table S1).
In addition to predicting composite wealth,

this same approach can be used to estimate, with
varying degrees of accuracy, how a phone survey
participant will respond to any question, such as
whether the respondent owns a motorcycle or
has electricity in the household (Fig. 1B and table
S1). Cross-validated area-under-the-curve (AUC)
scores—which indicate the probability that the
model will rank a randomly chosen positive re-
sponse higher than a randomly chosen negative
one—range from0.50 (no better than random) to
0.88 (quite effective). An analogous method can

be used to accurately identify the individuals in
the sample who are living below a relative poverty
threshold (AUC = 0.72 to 0.81) (Fig. 1C). With
further refinement, such methods could prove
useful to policy-makers and organizations that
target resources to the extreme poor (25) (supple-
mentary materials section 6).
For each of these prediction tasks, we use the

two-step procedure to select a different model
with different metrics and parameters. Although
not the focus of our analysis, we note discernible
patterns in the set of features identified as the
best joint predictors of these different response
variables. For instance, features related to an indi-
vidual’s patterns of mobility are generally predic-
tive of motorcycle ownership, whereas factors
related to an individual’s position within his or
her social network are more useful in predicting

SCIENCE sciencemag.org 27 NOVEMBER 2015 • VOL 350 ISSUE 6264 1075

Fig. 3. Comparison of wealth predictions to
government survey data. (A) Predicted composite
wealth index (district average), computed from2009
call data and aggregated by administrative district.
(B) Actual composite wealth index (district average),
as computed from a 2010 government DHS of
12,792 households. (C) Comparison of actual and
predicted district wealth, for each of the 30 districts,
with dots sized by population. (D) Comparison of
actual and predicted rates of electrification, for each
of the 30 districts. (E) Comparison of actual and
predicted cluster wealth, for each of the 492 DHS
clusters.CDR,calldetail records.
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poverty and wealth (fig. S3). These results suggest
that our approach might be generalized to predict
a broader class of survey responses, such as the
subjective opinions and perceptions of mobile
subscribers.
Having fit and cross-validated themodel on the

phone survey sample—a sample drawn to be rep-
resentative of all active mobile phone users—we
next generate out-of-sample predictions for the
characteristics of the remaining 1.5 million Rwan-
dan mobile phone users who did not participate
in the survey. Combined with the rich geospatial
markers in the phone data, the predicted attri-
butes of millions of individual subscribers enable
us to study the geographic distribution of sub-
scriber wealth at an extremely fine degree of
spatial granularity (Fig. 2). Whereas public data
fromRwanda are only accurate at the level of the
district (of which there are 30), the phone data
can be used to infer characteristics of each of
Rwanda’s 2148 cells, as well as small micro-
regions of just a few mobile subscribers (Fig. 2,
bottom right inset).
The accuracy of these microregional wealth

estimates cannot be directly verified, because no
other data set provides wealth information with
sufficient geographic resolution. However, when
further aggregated to the district level, we can
compare the distribution ofwealth predicted from
the call records of mobile subscribers (Fig. 3A) to
the distribution of wealthmeasured with “ground
truth” data collected by the Rwandan government
(Fig. 3B). The former estimates are computed by
averaging predicted wealth across the thousands
of individual mobile phone–based predictions in
each of Rwanda’s 30 districts; the latter estimates
are calculated using data from a nationally repre-
sentative Demographic and Health Survey (DHS)
of 12,792 households, conducted in person by the
National Institute of Statistics of Rwanda (26).
The strong correlation between these two predic-
tions is evident in Fig. 3C and exists whether the
ground truth is estimated from only those DHS
households that report owning a mobile phone
(r = 0.917) or from all households in the survey
(r = 0.916). As we discuss in the supplementary
materials (section 5A), the first correlation shows
that themodel’s out-of-sample predictions are rep-
resentative of the population of Rwandan mobile
phone owners. The second correlation indicates
that in countries like Rwanda, where patterns of
mobile phone adoption are similar across regions,
this method can provide a close approximation of
the distribution of wealth of the full national popu-
lation. Similar results are obtainedwhen the analy-
sis is disaggregated to the level of theDHS “cluster”
(r = 0.79) (Fig. 3E), a geographic unit designed to
be comparable to a village. These strong correla-
tions are partially driven by the stark differences
between urban and rural areas in Rwanda, but the
correlations persist even when comparing clusters
within urban or rural areas (fig. S6).
This same approach canbe used to predictmore

than just the average wealth of a district. For in-
stance, rates of district electrification estimated
from phone records are comparable to those re-
ported in the DHS survey (r = 0.93) (Fig. 3D). In

the urban capital of Kigali, we also find a correlation
(r = 0.58) between satellite estimates of night
light intensity in 0.55-km2 grid cells (fig. S7B) and
the predicted distribution—based on phone data
and themethods described earlier—of responses
to the question “Does your household have elec-
tricity?” (fig. S7C).
How might such methods be used in practice?

In addition to small-area estimation, one promis-
ing application is as a source of low-cost, interim
national statistics. Inmany developing economies,
long lag times typically occur between successive
national surveys. In Angola, for instance, the most
recent census before 2014 was conducted in 1970.
In that 44-year period, the official population grew
by more than 400%. Rwanda has better resources
for data collection, and the DHS preceding the
2010 DHS was conducted in 2007. However, even
in that relatively short period, the distribution of
wealth in Rwanda shifted slightly. Thus, we find
that the 2010 distribution of wealth is more accu-
rately reflected in projections based on our anal-
ysis of phone data from 2009 than in estimates
based on the 2007 DHS (fig. S8). This implies that
a policy-maker tasked with targeting the poorest
districts in Rwanda would obtain more accurate
information from estimates based on mobile
phone data than from estimates based on 2007
DHS data (supplementary materials section 6A).
In developing economies, where traditional

sources of population data are scarce but mobile
phones are increasingly common, these methods
may provide a cost-effective option for measuring
population characteristics. Whereas a typical na-
tional household survey costsmore than$1million
and requires 12 to 18 months to complete (27), the
phone survey we conducted cost only $12,000 and
took 4 weeks to administer. Looking forward, the
greatest challenge to such work lies in identifying
protocols that enable analysis of similar data while
respecting the privacy of individual subscribers
and the commercial concerns of mobile operators
(28,29).With careful consideration, however,many
compelling (and some speculative) applications are
within reach, including population monitoring in
remote and inaccessible regions, real-time policy
evaluation, and the targeting of resources to those
with the greatest need.
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I. Data Description and Construction 

A. Phone survey administration 

In Summer 2009, we coordinated a phone survey of a geographically stratified group of 

Rwandan mobile phone users.  Using a trained group of enumerators from the Kigali Institute of 

Science and Technology (KIST), a short, structured interview was administered to roughly 900 

active mobile phone subscribers. The survey instrument contained approximately 80 questions 

that focused on basic socioeconomic and demographic information, including asset ownership 

and household and housing characteristics (Table 1). Several of these questions were drawn 

directly from the survey instruments used by the National Institute of Statistics of Rwanda in 

their Demographic and Household Surveys (DHS), which is described in greater detail below. 

Aside from the phone number of the respondent, we did not solicit any personally identifying 

information such as first name, last name, or address. 

Full details on the administration of this phone survey are discussed in (30). In brief, the survey 

population was intended to be a representative sample of active subscribers on Rwanda’s largest 

mobile phone network. At the time, the operator had roughly 90 percent market share, and 1.5 

million registered Subscriber Identification Modules (SIM cards). However, since the number of 

registered SIMs greatly exceeds the number of active subscribers, we eliminated numbers which 

had not been used at least once in each of the three most recent months for which mobile phone 

data was available (October through December 2008).  Each of the remaining 800,000 numbers 

was assigned to a geographic district based on the location of the phone for the majority of calls 

made (see SM Section IVA for details).  The final sample was a geographically stratified random 

set of these numbers, with sampling weights determined by the distribution of active subscribers 

across districts (30).  

Enumerators made three attempts to contact each respondent, on different days and at different 

times of day. Respondents were compensated RWF500 (roughly US$1) for participating in the 

survey, which took between 10 and 20 minutes to administer. Survey enumerators requested 

informed consent from each respondent, in which the goals of the study were described and oral 

permission was received to merge survey responses with anonymized call records, in accordance 

with the protocols of our university’s ethical review board.  



The contact rate was roughly 61%; non-contacts were largely the result of phones that were 

turned off or disconnected. The cooperation rate was 97%; almost everyone who picked up the 

phone was enthusiastic to participate in a study with university researchers, with whom they 

generally had little prior contact. We thus interpret the survey sample as representative of the 

population of active mobile phone subscribers, who we assume are systematically different from 

both the population of mobile phone subscribers and the general Rwandan population. In SM 

Section V, we discuss in greater detail the extent to which the non-representativeness of the 

phone survey sample affects our results. 

B. Mobile phone call detail records (CDR) 

From Rwanda’s near-monopoly mobile phone operator, we obtained a complete historical log of 

call detail records (CDR), which contain basic metadata on all transactions mediated by the 

mobile phone network. The logs included all domestic and international calls, as well as every 

text message (SMS) sent and received on the network, from early 2005 to mid-2009. For each of 

these transactions, we observe the time and date of the call, the anonymized but unique identifier 

of the calling and receiving party, the duration of the call, as well as the cellular towers through 

which the call was routed. As described in greater detail in SM Section IVA, information on 

these cellular towers can be used to infer the approximate location of both the caller and the 

receiver at the time of the call. For the sample of phone survey respondents who completed the 

survey, information from the mobile operator was provided to match the true phone number to 

the anonymized identifier in the CDR dataset.  

C. Demographic and Health Surveys (DHS) 

To provide further validation of the external validity of this method, we compare out-of-sample 

wealth predictions to “ground truth” Demographic and Health Surveys (DHS) collected by the 

National Institute of Statistics of Rwanda. Two rounds of these surveys are used in our analysis: 

DHSV, which was conducted between December 2007 and April 2008 on a sample of 7,377 

households; and DHSVI, conducted between September 2010 and March 2011 on a sample of 

12,792 households.  



The DHS surveys are conducted with a nationally representative sample of households. Villages 

were selected with probability proportional to village size, and households are given survey 

weights to allow for reconstruction of nationally representative statistics (31). DHSV contained 

247 village clusters, while DHSVI contained 492. The geographic coordinates of each cluster’s 

centroid are also provided with the DHS data. However, as noted in the DHS documentation, 

“the data are randomly displaced up to 5 kilometres in rural areas and up to 2 kilometres in urban 

areas. A further 1 percent of rural clusters are displaced up to 10 kilometres.” These 

displacements add considerable measurement error to subregional estimates of wealth, but 

should not estimates aggregated at the district level, as is the case in most of our analysis.  

D. Composite wealth index construction 

In Rwanda, as in most developing countries, it is difficult to estimate the socioeconomic status of 

a survey respondent with a single survey question. Instead, household surveys typically rely on a 

large number of questions which can be used to infer the consumption or permanent income of 

the respondent (32). The Rwandan DHS, for instance, contains roughly seventy questions related 

to household assets, characteristics, and expenditures. The first principal component of these 

responses is commonly treated as a proxy indicator of the respondent’s unobserved wealth (21). 

In our phone surveys, which were designed to be very short, we did not have the option of asking 

such a large number of questions related to assets and housing characteristics. Instead, we 

selected the subset of questions that, in the DHS data, were most highly correlated with the first 

principal component of the full set of DHS responses. We further excluded questions that would 

be difficult to administer in a phone survey (e.g., in our piloting we found that most respondents 

were unable to quickly ascertain how much land they owned). The final set of asset-related 

questions is listed in Table S1B. We also include the size of the household and the number of 

children, but all results are robust to the exclusion of these factors. 

We compute the “composite wealth index” as the first principal component of the asset and 

household characteristics questions in our phone survey (21). The basis vectors W of the 

covariance matrix are estimated using weighted principal component analysis on the normalized 

data from the 856 phone survey respondents, where the weights are determined as described in 

SM Section 1A above (33). The first principal component captures 26 percent of the total 



variation in assets and household characteristics. When we later validate the phone-based 

predictions against data collected through government surveys (SM Section IV), we use the same 

basis vectors W computed on the phone survey data to project each DHS household’s asset 

responses onto an analogous composite wealth index. 

E. Satellite data 

We validate the phone-based predictions of regional electrification using data on satellite “night 

lights” using average radiance composite images from the Visible Infrared Imaging Radiometer 

Suite Day/Night Band (VIIRS-DNB). The VIIRS-DNB imagery recognizes wavelengths from 

green to near-infrared, and is preprocessed by the National Oceanic and Atmospheric 

Administration to remove stray light and emphasize light from cities. The satellite data is 

provided at the resolution of 0.742km x 0.742km grid cells, and is measured in units of 

nanowatts/cm2/square radian (34).1 

II. Feature engineering 

Our goal in engineering features is to transform an individual’s mobile phone transaction logs 

into a set of quantitative metrics that in turn can be used to infer that same individual’s economic 

state. In the related literature, the most common approach has been to carefully construct a small 

number of intuitive indicators from the phone metrics, and compare regional aggregates of those 

phone metrics to regional socioeconomic indicators. In such work, for instance, there is evidence 

that the geographic diversity and reciprocal nature of social relationships are both correlated with 

economic outcomes (8, 35–38). 

Our goal is different. We seek to develop measures of poverty and wealth that maximize 

predictive accuracy, possibly at the expense of the interpretability of the model. Thus, instead of 

devising a parsimonious set of metrics based on intuition, we take a brute force to feature 

engineering that is designed to capture as much variation as possible from the raw call detail 

records. Specifically, we develop a method based on a deterministic finite automaton (DFA) (39) 

to generate a large number of potentially correlated metrics, and then rely on regularization and 

                                                 
1 April 2012 version. These data were obtained from the NOAA National Geophysical Data Center, Earth 
Observation Group. 



related techniques to eliminate redundant metrics from the model. The primary advantage of 

using the DFA is that is restricts the number of degrees of freedom in the hands of the researcher; 

rather than specifying hundreds or thousands of “features” one by one, the DFA allows the 

researcher to specify a small number of different operations, which are then recursively applied 

to generate a large number of features. 

A. Baseline models: Single feature and top-5 features 

In addition to the combinatoric deterministic finite automaton (DFA) described below, we 

implement two simple approaches to establish baselines for comparison. The first is a an 

“intuitive” model, which consists of five hand-picked features based loosely on related work (8, 

35–38), and which are chosen to capture a variety of the behaviors reflected in mobile phone 

transaction logs. These features are: (i) the total number of calls in which the individual is 

involved (outgoing + incoming); (ii) the total number of text messages; (iii) the total number of 

international calls; (iv) the degree centrality of the individual (i.e., the total number of unique 

contacts with whom the individual interacts); and (v) the Radius of Gyration, a measure of the 

average travel distance of the individual (15). A cross-validated ordinary least squares model 

using these five features explains 20% of the variation in composite wealth index in the sample 

of 856 survey respondents (Table S1A). 

The second baseline uses the single feature, generated by the DFA, which is empirically 

determined to be most strongly correlated with the wealth composite index in the sample of 856 

survey respondents. More precisely, for each of the 5,088 features generated by the DFA, we use 

5-fold cross-validation to divide the set of 856 respondents into five different training and testing 

sets (with an 80%-20% split). For each training set, we fit a linear regression of the response 

variable on the single feature, and compute the R2 for the corresponding test set; we average the 

test R2 across these five folds, and select the feature that has the highest average test R2. The 

single best predictor, which has an average test R2 of 0.39, indicates, for an individual i, the 

weighted average of all of i's first-degree neighbors “day of week entropy” of outgoing SMS 

volume, where the weights are determined by the frequency of interaction between i and the 

neighbor. Roughly, this is an indication of the extent to which there is a high degree of 

predictability in the days of the week on which i’s friends and family tend to send text messages. 



While this single feature performs surprisingly well, we do not expect that this could have been 

foreseen in advance or that it would be as informative in other contexts (see SM Section VB). 

B. Deterministic finite automaton (DFA) 

Our deterministic finite automaton takes as input a list of call detail records (CDRs), where each 

element in the list is a transaction record containing a tuple of fields (date, time, userID, and so 

forth). From this initial state, the data transitions to subsequent states, where each transition 

defines a legal operation that transforms the data input to the state into a different dataset output 

from the state. The final output from the DFA is a single numerical value, which is equivalent to 

a single behavioral metric, or “feature.” Thus, any feature used in our analysis can be generated 

by a complete traversal of the automata. 

The DFA used for feature generation is shown in SM Figure 1, and is defined by: 

x A set of states 𝑄 = {𝑞0, 𝑞1, 𝑞2, 𝑞3, 𝑞11, 𝑞12, 𝑞13, 𝑞21, 𝑞22, 𝑞23} 

x The start state 𝑞0 

x The accepting state 𝑞3 

x The alphabet Σ = {𝐶𝐷𝑅𝑠, 𝐹𝑖𝑒𝑙𝑑𝑠, 𝐹𝑖𝑒𝑙𝑑, 𝑉𝑎𝑙𝑢𝑒} 

x The transition function 𝛿: 𝑄 × Σ →  𝑄 

SM Figure 1 depicts the transition function. Note that we assume that any element of 𝑄 × Σ not 

pictured results in a transition from state qi back to qi. For example, 𝛿(𝑞13, 𝑎′) = 𝑞3 while 

𝛿(𝑞13, 𝑓) = 𝑞13 since it is not legal. The transition function is specified as: 

x 𝑓(⋅): 𝑄 × 𝐶𝐷𝑅𝑠 →  𝐶𝐷𝑅𝑠: “Filter” operations on a set of CDRs that select a subset of the 

CDR tuples.  

Example: Filter all rows that are not incoming calls. 

Legal transitions: calls over 60 seconds; calls made during the working week (Monday - 

Friday, 9am -5pm); calls not made during the working week; incoming activity; outgoing 

activity; international activity; text messages (SMS). 

x 𝑚(⋅), 𝑚′(⋅), 𝑚′′(⋅): 𝑄 × 𝐶𝐷𝑅𝑠 →  𝑙𝑖𝑠𝑡(𝐶𝐷𝑅𝑠): “Group By” operations that transform a 

dataset of type D into a map from the attribute to subsets of D, where subsets are defined 



by the attribute, which may be the identity of the subscriber (“ego”), the identity of the 

subscriber’s contacts (“alter”), or a time period attribute. 

Example: Group all CDRs by ego and week of the year. 

Legal transitions: group by ego; group by alter; group by week. 

x 𝑠(⋅): 𝑄 × 𝐶𝐷𝑅𝑠 →  𝐹𝑖𝑒𝑙𝑑𝑠: “Select” operations that transform a set of rows into a set of 

values. This can be any operation on a set of rows that maps each row to a number.  

Example: Select a single field from a row (such as “duration of call”) 

Legal transitions: select duration of event; select geocoordinates of ego at time of event; 

select day of week; select hour of day; 

x 𝑎(⋅), 𝑎′(⋅), 𝑎′′(⋅): 𝑄 × 𝐹𝑖𝑒𝑙𝑑 →  𝑉𝑎𝑙𝑢𝑒: “Aggregate” operations that aggregate a set of 

numbers into a single number. These convert a mapping from some attribute to a set of 

values to a mapping from an attribute to a single number. 

Example a: Compute mean of a list of numbers; compute radius of gyration of a set of 

geocoordinates. 

Example a’: Computes aggregation over first-degree network properties, e.g., average 

PageRank of first degree neighbors of an individual. 

Example a’’: Computes aggregation over time, e.g., trend over time in calls per week. 

Legal transitions: mean; maximum; minimum; standard deviation; sum; radius of 

gyration; count of unique values. 

x 𝑟′(⋅), 𝑟′′(⋅): 𝑄 × 𝐶𝐷𝑅𝑠 →  𝐶𝐷𝑅𝑠: “Reduce” operations that groups a multi-level mapping 

by one level. 

Example: Subsets grouped by user-time are aggregated into subsets grouped by user.  

Legal transitions: Values mapping to (ego, time period) tuples are grouped in sets 

identified by the ego and the mapping from egos to their sets are returned. 

Not depicted in the DFA, but also included in feature engineering, are simple transformations 

(log and quadratic) of the DFA traversals. We also experimented with including features that do 

not fall neatly into this framework, such as PageRank, but in practice this has little effect on the 

results. 



As an example, the following traversal of the DFA will produce a feature that indicates the 

standard deviation of the weekly average call duration during working hours.  

x Start state 𝑞0 

x 𝛿(𝑞0, 𝑓𝑤𝑜𝑟𝑘𝑑𝑎𝑦 ∈ 𝑓) = 𝑞0: filters out calls made on weekends or outside 9am-5pm 

x 𝛿(𝑞0, 𝑚) = 𝑞1: groups all calls by subscriber (“ego”) 

x 𝛿(𝑞1, 𝑚′′) = 𝑞21: groups all calls by week, calls are now grouped by subscriber-week 

x 𝛿(𝑞21, 𝑠𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛 ∈ 𝑠) = 𝑞22: converts groups of calls to groups of call-durations 

x 𝛿(𝑞22, 𝑎𝑚𝑒𝑎𝑛 ∈ 𝑎) = 𝑞23: computes the mean of each group of call-durations; at this 

point, each subscriber is represented by a set of weekly averages 

x 𝛿(𝑞23, 𝑎𝑠𝑑
′′ ∈ 𝑎) = 𝑞3: computes the standard deviation of weekly averages. 

C. Feature categorization 

While the DFA is effective in constructing a large number of features from a relatively 

parsimonious grammar, the quantity of resultant features complicates interpretation. This is a 

clear disadvantage of the DFA relative to more parsimonious models based on intuitive features. 

As noted above, however, our primary goal is predictive accuracy, not model interpretation. 

Nonetheless, to inform the subsequent analysis, we label each feature with a “type” by grouping 

the features according to approximate function. Alternative partitionings of the feature space are 

equally plausible, but the partition we choose roughly follows the broad classes of features 

discussed in related literature (40). 

x SMS activity (ego): Metrics reflecting SMS-based activity of the subscriber, including 

volume, variance, variation over time, etc. 

x SMS activity (alter): Metrics reflecting SMS-based activity of the subscriber’s first-

degree network (FDN). 

x Call activity (ego): Metrics of call-based activity of the subscriber. 

x Call activity (alter): Metrics of call activity of the subscriber’s FDN. 

x International communications (ego): International call activity of the subscriber. 

x International communications (alter): International call of the subscriber’s FDN. 

x Movement (ego): Information on the pattern of locations visited by the subscriber 



x Movement (alter): Information on the locations visited by the subscriber’s FDN. 

x Local network structure (ego): Simple properties describing the subscriber’s position 

within his or her FDN. 

x Local network structure (alter): properties of the subscriber’s FDN’s social networks. 

x Global network structure: Structural properties describer the subscriber’s position within 

the entire graph, such as PageRank and clustering coefficients. 

III. Model fitting and out of sample prediction 

A. Supervised learning 

From the several thousand behavioral metrics constructed by the DFA, we used supervised 

learning techniques to identify a smaller subset of features that are the best joint predictors of the 

response variable, using the sample of 856 survey respondents to train the model. Specifically, 

we use elastic net regularization (41) to penalize model complexity and reduce the likelihood that 

the model is “overfit” on the small number of training instances. For each possible model 

parameter βj, the elastic net imposes a penalty equal to  

𝜆 ∑ (𝛼𝛽𝑗
2 + (1 − 𝛼)|𝛽𝑗|)𝑝

𝑗=1  ,                                         (1) 

This penalty linearly combines a lasso (L1) penalty for variable selection with variable shrinkage 

as in ridge regression (L2), where higher values of λ produce more parsimonious models. As 

noted in SM Section IIA, we compare the elastic net model to models using lasso and ridge 

regression separately, and find only modest differences in performance from the elastic net. 

Similar results obtain when using nonlinear tree-based ensemble regressors to predict the 

continuous-valued composite wealth index, and random forest classifiers to predict asset 

ownership and housing characteristics (24) – these results are presented in Table S1A. 

For each model, we use cross-validation to help ensure that the model will generalize beyond the 

small sample upon which it is fit. Specifically, we use 5-fold cross-validation to select model 

parameters that maximize average R2 on the held-out test data across 5-folds.2 Each fold is 

                                                 
2 Cross-validation is a common method for model selection and validation. The data is first randomly divided into K 
random subsets, called “folds.” Then, each fold is removed from the dataset, one at a time; the model is fit on the 
remaining data, and evaluated on the held-out fold. This process is repeated for each fold, and the model 



selected with a weighted bootstrap, where the weights are determined as described in SM Section 

SIA to help ensure that the model is representative of the total population of mobile phone 

subscribers (43).3 

SM Figure 4A illustrates how model performance depends on the choice of the regularization 

parameter λ. For large values of λ, the model selects a very small number of features, and the 

average performance on both the training and testing data is quite poor. (For extreme values of λ, 

performance is also considerably worse than the unregularized single-predictor model). As λ is 

decreased, a larger number of features enter the model, and performance on both the training and 

testing data increases until the optimal model selects 101 features. Additional increases in λ yield 

improved performance on the training data, but performance on the test data degrades as the 

model is overfit to the training instances. 

B. Improving model performance 

While model performance appears to be only marginally affected by the choice of the learning 

algorithm, we find that predictive performance is significantly impacted by the relatively small 

number of independent observations available. This issue is illustrated in SM Figure 2, where we 

show the performance that would have been achieved if we had trained on a smaller number of 

independent observations. These hypothetical scenarios are determined by drawing a random 

subset of m observations from the full set of 856 respondents, then re-training the model as if 

only those observations were available. We interpret the monotonic increase with sample size, 

and the continued positive slope at the maximum where m=856, as evidence that further 

performance gains could be achieved by expanding the sample of phone survey respondents. In 

our case, the size of the survey sample was determined by a financial constraint; increasing the 

sample size would likely produce noticeable improvements in predictive accuracy. 

C. Interpreting supervised learning models 

                                                 
performance is reported as the average across all of the held-out folds (42). In our case, we repeat this entire process 
for all possible values of λ and α, then select the model that performs best (across held-out folds).  
3 In practice, the weighted bootstrap sample selection has little impact on results relative to a naïve selection process 
that evenly divides the sample into five non-overlapping sets of training (80%) and testing (20%) instances. 



The original set of 5,088 features contains several behavioral metrics that are unconditionally 

correlated with the socioeconomic data collected in phone surveys, and a large number of 

features that are uncorrelated  (SM Figure 3A). SM Figure 3B shows the ten features which are 

most highly (unconditionally) correlated with the wealth composite index; many of these features 

are correlated with each other, and have to do with the temporal entropy of the communications 

behavior of an individual’s first-degree network. SM Figure 3C uses the feature partitioning 

described in SM Section IIC to show the distribution of the 5,088 separate R2 values by feature 

type, separately for the task of predicting the composite wealth index and for the task of 

predicting whether the respondent owns a motorcycle. While the two sets of distributions are 

visually similar, the correlations are generally higher for wealth than for motorcycle ownership. 

Comparing the relative importance of different classes, it appears that features related to the 

movement patterns of an individual’s social network are predictive of motorcycle ownership, 

whereas factors related to text messaging are most useful in predicting wealth. While it is not 

difficult to rationalize these observed trends ex post (for instance, it may be that text messaging 

is related to literacy, which is in turn correlated with wealth), we are wary of interpreting these 

correlations too literally. 

The supervised learner described earlier optimizes the joint predictive ability of a set of features, 

where regularization and other methods for model selection are used to eliminate features that 

are not predictive or redundant. SM Figure 4A shows how model performance depends on the 

number of features in the model, which is in turn determined by the regularization parameter λ. 

SM Figure 4B illustrates how the set of features in the final model also changes as a function of 

the regularization parameter. When model complexity is highly penalized, few features are 

selected and they are initially all from the class of features that are unconditionally correlated 

with the response variable (in this case, the features related to the temporal entropy of the 

communications behavior of an individual’s first-degree network.). As the penalty is reduced and 

more features enter the model, a more diverse set of features is selected. The optimal model 

includes features from a large number of different feature groups.  

IV. Validation with independent sources of “ground truth” data  

A. Assignment of individual mobile phone subscribers to geographic locations 



Each mobile phone transaction in the call detail records is tagged with a geographic identifier 

corresponding to the mobile phone cell tower nearest the subscriber at the time of the transaction. 

Combined with a separate database containing the GPS coordinates of each cell tower, this 

allows us to approximately locate each individual at the time when the transaction occurs. The 

set of locations associated at which an individual is observed can in turn be used to infer that 

individuals approximate “home” location (17, 44). The primary method we employ to locate an 

individual is to calculate the modal evening tower, defined as the single tower which the 

subscriber is observed to use most frequently between the hours of 8pm and 6am.4 In developing 

the high-resolution visualizations (Figure 2), we additionally compute each subscriber’s “center 

of gravity”, defined as the weighted Euclidean centroid of all locations observed by the 

subscriber (17).5 In practice, our results are not sensitive to the exact manner in which locations 

are computed: choosing “home” location by looking at all towers used at all hours of the day, for 

instance, yields nearly identical results. At the finest level of spatial granularity presented (Figure 

2D), we show average locations of groups of 5-15 subscribers, where groups are determined 

using k-means clustering on the subscribers’ centers of gravity, in order to add a layer of 

anonymity to the high-resolution maps.  

B. Geographic aggregation: matching cell tower locations to DHS locations 

When comparing the predicted wealth composite measures derived from the call records to the 

“ground truth” data found in the Demographic and Health Surveys, we require a comparable 

method of geographically aggregating data from the two sources. Our analysis uses two such 

levels of aggregation: district-level aggregation and “cluster”-level aggregation. 

                                                 
4 More precisely, we compute, for each hour of the day, the most frequently used tower in that hour (the “modal 
tower-hour”). We then compute, for each evening, the most frequently observed modal tower-hour (the “modal 
tower-evening”). Finally, we compute the most frequently observed modal tower-evening across all evenings in the 
dataset, and use that as the subscriber’s “home” location. This approach is designed to capture the location at which 
the subscriber spends the majority of his or her hours, rather than the location from which a majority of calls are 
made. 
5 Specifically, if an individual i with an modal evening tower mti is observed at Ni (non-unique) locations 
(𝑟𝑖1, … , 𝑟𝑖𝑁𝑖), we define the center of gravity as 1

𝑁𝑖
∑ 𝑟𝑖𝑡 𝑁𝑖

𝑡=1 𝐶𝑂𝐺𝑖 ∗ 𝟏(𝑟𝑖𝑡 − 𝑚𝑡𝑖 < 𝑘), where the indicator function 
restricts the weighted average to include towers within k kilometers of mti, to remove the influence of outliers (such 
as a weekend trip or short vacation). In the figures that rely on the center of gravity, we set k =10, but qualitatively 
similar results are obtained for a variety of reasonable thresholds (including k=∞). 



When aggregating estimates at the district level, each mobile phone subscriber is assigned to a 

modal evening tower as described in Section IVA above. As shown in SM Figure 5, the set of 

unique tower locations form a voronoi division of Rwanda. We compute the average composite 

wealth of each voronoi division 𝑌𝑣
𝐶𝐷𝑅 as the mean of the composite wealth values of all 

subscribers i whose modal evening tower is v, i.e. 𝑌𝑣
𝐶𝐷𝑅 = 1

𝑁𝑣
∑ 𝑦�̂�𝑖∈𝑣 , where 𝑦�̂� is the predicted 

wealth of subscriber i and Nv is the number of subscribers in v. The average predicted composite 

wealth of district d is then computed as the weighted average of all towers falling within the 

district borders, 𝑌𝑑
𝐶𝐷𝑅 = 1

∑𝑤𝑑𝑣
∑ 𝑤𝑑𝑣 ∗ 𝑌𝑣

𝐶𝐷𝑅
𝑣 , where wdv indicates the proportion of the tower’s 

voronoi cell that lies within the district boundary (SM Figure 5, inset).  

Our validation estimates compare these 𝑌𝑑
𝐶𝐷𝑅, the estimates of district wealth based on mobile 

phone data, to the “true” wealth of the district, 𝑌𝑑
𝐷𝐻𝑆, which is computed from the DHS data as 

𝑌𝑑
𝐷𝐻𝑆 = 1

∑  𝑤𝑗𝑗∈𝑑
∑ 𝑤𝑗 ∗ 𝑦𝑗𝑗∈𝑑 , or simply the weighted average of all households j in district d, 

where wj is the sampling weight given to j in the DHS. 𝑌𝑑
𝐷𝐻𝑆 is computed separately for all 

households in a district, and for just the subset of household who own a mobile phone, which we 

later refer to as 𝑌𝑑
𝐷𝐻𝑆−𝑀𝑃. Correlations are weighted by population expansion factors to fit the 

regression line more closely to regions with large populations (4).  

C. Cluster-level validation 

We follow an analogous procedure when aggregating wealth estimates at the cluster level. 

Clusters are meant to approximate villages in Rwanda, and are defined in the data by the GPS 

locations of cluster centers collected during DHS survey collection (31). SM Figure 5 provides 

an example of how the aggregated composite wealth index is computed for a single cluster. The 

red dot indicates the cluster’s center, and the pink shaded area represents the voronoi cell 

covered by the cluster. The blue dots indicate the locations of mobile phone towers, and the blue 

lines indicate the implied voronoi division, where dots are only shown for towers where the 

tower’s voronoi cell overlaps with the cluster’s voronoi cell. The numbers indicate wdv, the 

proportion of the cluster’s cell covered by the tower’s cell. Thus, the CDR-imputed wealth value 

for the pink cluster will be the weighted sum of the average composite wealth predictions of each 

of the labelled blue cells, where the weight is given by the black number in the cell. 



As noted in SM Section IC, the cluster centroids are randomly displaced by up to 10km by the 

DHS administrators. These displacements are intended to protect the identity of individual 

households, and add considerable measurement error to our ability to match DHS data to mobile 

phone data. The DHS documentation thus advises against disaggregating geospatial analysis 

below the district level (31).6 For this reason, the results we emphasize in the main text that rely 

on DHS data use district-level aggregation. 

These caveats notwithstanding, we compare phone-based estimates of average cluster wealth to 

DHS averages, for each of the 492 clusters in the 2010 DHS (Figure 3E). In general, the 

correlation at the cluster level (r = 0.79) is weaker than at the district level (r = 0.92), though for 

the reasons noted above this is not surprising. The primary advantage of the cluster-level analysis 

is that it makes it possible to analyze within-district variation, to see whether the phone-based 

approach picks up on differences between clusters within a district that are observed in the DHS 

data. SM Figure 6 thus disaggregates the results of Figure 3E by urban and rural regions. The 

original relationship (r = 0.79) is attenuated, but a correlation is still observed within both urban 

(r = 0.64) and rural (r = 0.50) districts. 

D. Satellite night lights 

Recently, a small body of work has used night-time luminosity data collected by satellites to 

measure economic output and growth (45, 46). A key advantage of satellite data is that it is 

pervasive and publicly available. SI Figure 6 compares data collected by satellites on the 

nighttime luminosity in Rwanda with estimates of electrification based on mobile phone data. 

The night-light imagery, collected by the National Oceanic and Atmospheric Administration, 

provides a resolution of 15 arc-seconds (equivalent to a 0.74km x 0.74km grid), which is shown 

for the country of Rwanda (SI Figure 6A) and enlarged for the region surrounding the capital city 

of Kigali (SI Figure 6B). As can be seen in SI Figure 6A, there is very little variation in 

                                                 
6 Excerpted from the DHS documentation (at http://dhsprogram.com/faq.cfm, accessed October 2015): 
“Can I calculate indicator estimates for areas smaller than the [district]? 

The survey design for DHS is not conducive for small area estimation. Households and respondents were 
selected in order to produce representative population estimates at the national and [district] level only. Any sub-
[district] estimates are highly unreliable and likely to result in large standard errors. 

Is it possible to do spatial analysis of DHS at the individual cluster level? 
No, the sample frame is designed to ensure that the data are representative at the national and district level only.” 



luminosity data in poor, rural regions. Indeed, outside of the capital city of Kigali, most of the 

country of Rwanda appears dark and unlit. 

By contrast, the approach based on phone data captures a great deal of variation even in the most 

rural parts of the country, and allows for the distinction between households that have access to 

electricity and households that are brightly lit at night (Figure 3). We use the method described 

in the paper to predict how each of the 1.5 million subscribers would respond to the survey 

question, “Does your household have electricity?” using methods analogous to those used to 

predict composite wealth. Each subscriber’s center of gravity is used to place the individual in a 

grid cell, and the average predicted response is computed across all subscribers. These values are 

then used to construct a map of predicted electrification in the Kigali region (SI Figure 6C). 

While the two images are visually similar, they are designed to capture slightly different 

phenomena: the night light imagery is optimized “to observe dim signals such as city lights, gas 

flares, auroras, wildfires, and reflected moonlight”; the mobile phone-based predictions are 

constructed to map household electrification. In urban settings like Kigali, we presume these to 

be strongly correlated, but in more rural regions the distinction is more important. 

V. Generalizability and external validity 

The results in Figure 1 illustrate how our method can be used to infer individual characteristics 

(in our case, phone survey responses) from passively-generated transactional data (mobile phone 

records), for the population of individuals who generate such data (the population of active 

mobile phone subscribers). This method, we believe, should generalize to a wide range of 

contexts where it is possible to supplement large transactional datasets with targeted surveys. SM 

Section VI provides several examples of possible applications of this method that extend far 

beyond the population of Rwandan mobile phone owners, which we hope we and other 

researchers can improve upon in future work. 

A. Population inference from a sample of mobile phone subscribers 

The model fit on the sample of 856 respondents is then used to generate out-of-sample 

predictions for the population of 1.5 million mobile phone subscribers in Rwanda. To validate 

the accuracy of these predictions, we compare the aggregated output of this model to DHS data 



aggregated at the same geographic level. In performing this validation, we observe two distinct 

results.  

First, we find that the average wealth of a district, as predicted by the mobile phone data (𝑌𝑑
𝐶𝐷𝑅), 

is strongly correlated (r = 0.917) with the average wealth of mobile-phone owning households in 

that district (𝑌𝑑
𝐷𝐻𝑆−𝑀𝑃), as reported in the 2010 DHS.7 This provides objective validation that our 

method can reconstruct the distribution of wealth of a population for whom we expect it to be 

representative, i.e., mobile phone owners. Since our estimate of 𝑌𝑑
𝐶𝐷𝑅 was constructed “in a 

vacuum” and without access to the DHS data, there is no possibility that the relationship is 

mechanical or that the model was overfit to the DHS target. 

Second, as shown in Figure 3, we observe an equally strong correlation (r =  0.916) between the 

phone-based estimates of district wealth (𝑌𝑑
𝐶𝐷𝑅) and the average wealth of all households in the 

district (𝑌𝑑
𝐷𝐻𝑆). This result indicates that, at least in Rwanda, our method can approximate the 

distribution of wealth of the full national population. This is true despite the fact that 𝑌𝑑
𝐷𝐻𝑆 is 

constructed from a sample that is representative of the population of all Rwandans, while 𝑌𝑑
𝐶𝐷𝑅 is 

constructed from a sample that is representative of the population of active mobile phone 

subscribers. And it is true despite the fact that, as we have shown in prior work (30), these two 

populations are different: mobile phone subscribers in general are wealthier, better educated, and 

more likely to be male.  

B. Generalizing to other contexts 

In other contexts, it is possible that one could accurately reconstruct the wealth of phone owners 

from phone records (as we do in Figure 1), but not be able to accurately reconstruct the 

distribution of wealth of the full population from out-of-sample inferences about mobile 

subscribers (as we do in Figure 3). In the general case, assume the researcher has conducted a 

targeted survey with a sample of individuals (POPsurvey), who we assume are a random, 

representative sample of the population of individuals for whom the researcher has transactional 

data (POPdata),8 who in turn constitute a subset of the full population (POPfull). As a broad 

                                                 
7 In this DHS, mobile phones are owned by approximately 42% of the sample or 5,315 households. 
8 Our efforts to ensure to draw a sample for POPsurvey that was representative of POPdata are described in SM Section 
1A.  



heuristic, the more representative POPdata are of POPfull, the more effective we expect this 

approach will be; if POPdata are not representative, then validating estimates against external data 

on POPfull, as we have with Figure 3, is a critical step. 

In Rwanda, there are several possible explanations for why we are able to reconstruct the 

distribution of wealth of POPfull from POPdata even though we know the latter is not a 

representative sample of the former. The simplest explanation, however, is the fact that in 

Rwanda, 𝑌𝑑
𝐷𝐻𝑆−𝑀𝑃is closely correlated with 𝑌𝑑

𝐷𝐻𝑆 (r = 0.984). In other words, there exists a 

strong correlation between the average wealth of region’s population and the average wealth of a 

region’s mobile phone-owning population. In situations where the selection process into mobile 

phone ownership is uniform across regions, this result is likely to generalize. 

More broadly, as mobile phones are quickly adopted in developing countries (11), it may become 

more tenable to predict wealth and poverty from mobile phone data in a broad range of 

geographic contexts. In general, however, POPdata may not be representative of POPfull, and the 

ability to infer properties of POPfull from POPdata will depend heavily on the context of the 

application. In Rwanda, for instance, our analysis was facilitated by the unusual concentration of 

the mobile phone market. In more fragmented markets, the approach might need to be adapted if 

there is systematic selection of subscribers into mobile phone network providers, unless the 

researcher can obtain data from all relevant operators.9 Similarly, the near-ubiquitous coverage 

and high density of cellular towers in Rwanda (SM Figure 5) made it possible to include remote 

regions in POPsurvey, which in turn allowed us to construct high-resolution estimates for the entire 

country (Figure 2).  

Related, our analysis focuses on predicting the composite wealth of a subscriber (𝑦�̂�), where the 

composite wealth is defined the first principal component of the assets and characteristics of the 

household. This target variable was well-suited to the Rwandan context, where many phones are 

shared within households (30), income is typically pooled among household members, and the 

majority of households rely on subsistence agriculture. In other contexts, where phone use is 

more individual and it is more common to earn a fixed wage, individual income may be a more 

                                                 
9 Here, an intriguing possibility is governments would require, or other institutions would provide incentives, to 
operators to make data available for humanitarian use (47). 



natural target prediction variable. However, one limitation of the approach we propose is that it 

is designed to model response variables that can be elicited through short, structured phone 

interviews. Thus, it would be difficult to use this method to predict consumption or expenditures, 

which typically require extensive survey modules, or more sensitive topics that respondents do 

not feel comfortable discussing over the phone. 

Other idiosyncrasies of the Rwandan context, such as the dominance of pre-paid accounts and 

the per-second billing structure, likely impacted the set of features engineered and selected 

through supervised learning. A fragmented market would also affect the model fit on POPsurvey, 

as a single operator’s call detail records would only capture partial information for a competitor’s 

subscribers. However, we do not expect that such idiosyncrasies would necessarily weaken one’s 

ability to train a model on POPsurvey, or imply non-representativeness of POPdata. In other words, 

while the fitted model would change, the process for fitting the model would remain the same, 

and any changes in goodness of fit are hard to predict ex ante. 

VI. Applications and extensions 

The focus of this paper has been on predicting poverty and wealth from mobile phone data. 

However, with minimal changes, an analogous approach could be used to predict a much broader 

set of characteristics (not just wealth and poverty) by supplementing other large datasets (not just 

mobile phone records) with other targeted data collection (not just phone surveys). We conclude 

with a discussion of several ways in which the methods presented in this paper could be further 

extended. 

A. Interim national statistics 

One compelling use case for the phone-based predictions of poverty and wealth is as a source of 

interim national statistics. The thought experiment we imagine is a policymaker who needs to 

make a decision that requires knowledge of the distribution of wealth. If the policymaker does 

not have the resources to collect original data, in many countries she would likely rely on data 

from the most recent nationally-representative survey. As we have noted in the main text, in 

many developing countries, such data is woefully out of date (3). 



Rwanda, in this sense, is unrepresentative of much of sub-Saharan Africa, as multiple nationally-

representative surveys have been conducted in Rwanda in recent years. Even so, if our 

policymaker were in Rwanda in 2010, it is likely that she would use the results of the 2007 DHS, 

as the results from the 2010 DHS were not made public until mid-2011. As can be seen in SM 

Figure 8, however, the correlation between estimates of wealth based on mobile phone data and 

2010 DHS data (r = 0.91) is in fact greater than the correlation between the two successive 

rounds of DHS data (r = 0.84). Thus, if she were to use the 2007 DHS data to identify the 

districts with below-average wealth, as defined by the first principal component of 2007 DHS 

assets, she would correctly identify 14 of the 20 districts (70%) which had below-average wealth 

in 2010, defined by the first principal component of 2010 DHS assets. By contrast, if she were to 

use the estimates of district wealth compute from the call records, she would correctly identify 

17 of the 20 districts (85%). In countries where longer lags exist between successive survey 

waves, these differences could be quite meaningful. 

B. Targeting individuals for welfare subsidies, critical information, or promotions 

The method we describe makes it possible to predict the characteristics of millions of individual 

mobile phone subscribers. This creates obvious opportunities for profit, if firms wish to target 

advertising or promotional content to specific demographics. It may also facilitate new methods 

for targeting target resources to individuals with the greatest need, or for providing information 

to individuals likely to be at risk. As currently developed, the method focuses on predicting a 

composite asset index, but in principle a similar approach could be used to estimate consumption 

as in a proxy means test (48). Relative to the more common asset-based proxy means test, a 

method based on phone (or other digital transactions) data has certain advantages: it could be 

targeted to individuals rather than to households; the observed characteristics, derived from call 

data, can be observed with little marginal cost once the fixed cost of data access is paid; the 

highly nonparametric process for fitting the target variable to observed metrics could allow for 

more accurate targeting; and the allocation rule could be made difficult to game. 

Yet any implementation of such a system will also face significant obstacles. Many individuals, 

and particularly the most vulnerable, still do not generate a digital transaction log, and may 

remain “off the grid” for the foreseeable future. Even if the goal were to only reach mobile phone 

owners, there would be significant barriers to obtaining the necessary data on phone use, 



particularly in markets with multiple operators. Finally, as we discuss below, it is likely that the 

function mapping phone use to the target variable will change over time, either through natural 

shifts in patterns of device use or through deliberate actions of individuals who wish to alter their 

behavior to become eligible for benefits. One can imagine possible solutions to these challenges 

– for example by distributing phones to potential beneficiaries, government-mandated data 

sharing regulations, or frequent model rebasing – but the path forward is not trivial. 

C. Measuring changes over time, and impact evaluation 

Perhaps most compelling, and also most speculative, is the possibility that related methods could 

be used to detect changes over time in the social, economic, or mental state of an individual or 

small region. A large body of work indicates that events in the real world have unique 

fingerprints in transactional data (6, 49, 50), and it is easy to imagine that a sudden period of 

hunger or a bout of depression would be manifest in the phone records of the affected. If a 

derivative approach could be used to reliably estimate changes in welfare over time, it would 

enable new approaches to impact evaluation and program monitoring, among other applications. 

As we have stated repeatedly, however, we do not assume that a model trained on a specific 

population at a specific point in time could be used to draw inferences about a different 

population or a different time period. Rather, we expect that the true mapping from digital data to 

welfare outcomes is context-dependent, and that the model estimated in one time period would 

deteriorate as time passes from the moment at which it is fit (51). An interesting avenue to 

pursue here would be to periodically rebase the model by conducting additional surveys to 

update the model parameters, possibly using online machine learning methods to determine 

when new surveys are needed and with which populations. 

 

 
 

 

  



A Elastic Net Random Forest 
 r R2 r R2 
Optimal DFA-based model 0.68  0.46  0.63 0.40 
“Intuitive” 5-feature model 0.44 0.20 0.37 0.14 
Single-feature model 0.61 0.38 0.46 0.22 

 

B Accuracy AUC F score Baseline 
Owns a refrigerator 0.75 0.88 0.40 0.11 
Household has electricity 0.72 0.85 0.74 0.60 
Owns a television 0.73 0.84 0.72 0.49 
Owns a bicycle 0.64 0.68 0.47 0.30 
Owns a motorcycle/scooter 0.72 0.67 0.20 0.11 
Owns a radio 0.92 0.50 0.96 0.96 

 
Table S1. Cross-validated performance of predictive models. The models are trained using 5-fold cross-
validation on the set of 856 survey respondents. (A) Measures of goodness of fit (correlation coefficient and R2) for 
two optimized models: the elastic net which selects 101 features, and a random forest regressor. For comparison, we 
show performance measures trained on set of five features commonly cited in the literature (total call volume, total 
SMS volume, total international call volume, radius of gyration, degree centrality); and for a model with the single 
most predictive feature (the weighted average of all first-degree neighbor’s “Day of week (DoW) entropy” of 
outgoing SMS volume). (B) Performance measures and a naïve baseline for predicting binary survey responses. 
Accuracy indicates the fraction of correct predictions from regularized logistic regression; Area under curve (AUC) 
indicates the probability that a classifier will rank a randomly chosen positive instance higher than a randomly 
chosen negative one, which helps account for the fact that some assets are quite common while others are quite 
uncommon; the F score provides a performance measure that balances precision and recall; the Baseline is the 
fraction of respondents who report owning the asset. 
  



 

 

 

 

 

SM Fig. 1. Deterministic finite automaton used for feature engineering. Circles represent states and arrows 
represent legal transitions, where q0 is the start state and q3 is the accepting (end) state. The final output from the 
DFA is a single numerical value, which is equivalent to a single behavioral metric, or “feature.” 
 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

SM Fig. 2. Model performance. As the number of training instances increases, the performance of the model 
steadily improves. Adding additional respondents would likely enable continued increases in predictive accuracy.  
  



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

SM Fig. 3. Metrics of phone use that correlate with survey responses. (A) The distribution of R2 values from 
5,088 separate regressions of the wealth composite index on each feature, showing average accuracy on the test set 
after 5-fold cross validation. (B) Representative list of features strongly correlated with the composite wealth 
index. (C) Distribution of R2 values by feature class, for different response variables. 
 

 

 

Feature R2 
Weighted average of all first-degree neighbor’s “Day of week 
(DoW) entropy” of outgoing SMS volume 0.376 

Avg. of alter’s “Hour of Day (HoD) entropy”, outgoing SMS  0.371 

Avg. of alter’s DoW entropy for incoming SMS 0.364 

Avg. of alter’s HoD entropy for incoming SMS  0.356 

Avg. of alter’s HoD entropy for incoming calls over 60s 0.354 

Avg. of alter’s DoW entropy for incoming calls over 60s 0.351 

Avg. of alter’s HoD entropy for outgoing calls over 60s 0.338 

Avg. of alter’s DoW entropy for outgoing calls over 60s 0.330 

Avg. of alter’s number of unique call contacts 0.330 

Avg. of alter’s number of unique SMS contacts 0.318 
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SM Fig. 4. The impact of regularization on model performance and feature selection. (A) Average cross-
validated performance, showing average R2 across 5 random training folds and testing folds. Increasing the 
regularization parameter produces more parsimonious models with fewer features. The optimal regularized model 
includes 101 features. Including additional features causes the model to overfit on the set of training instances, while 
excluding features degrades predictive accuracy. (B) Composition of features selected for models of varying 
complexity. When model complexity is highly penalized, few features are selected and they are all initially from the 
same class (SMS activity of the ego’s first-degree network of “alters”). As the penalty is reduced and more features 
enter the model, a more diverse set of features is selected.  
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SM Fig. 5. Matching locations of mobile phone subscribers to geographic regions in household survey data. 
Rwanda is comprised of 30 administrative districts, shown with black borders. In 2009, Rwanda contained roughly 
300 unique mobile phone towers, indicated with blue dots. The voronoi tessellation formed by these towers is shown 
with blue lines.  The 2010 DHS sample frame used 492 clusters, the centroids of which are indicated with red dots, 
and the voronoi tessellation with red lines. The inset figure illustrates how the areas of overlap between the two 
voronoi divisions are used to compare information aggregated within mobile phone towers to information 
aggregated within DHS clusters. 
  



 

 

 

 

 

 

  

 
 
 
 
 
 
 
 
SM Fig. 6. Comparison of wealth predictions to government survey data, separately for urban and rural 
areas. The left figure restricts the analysis to DHS clusters within the urban capital of Kigali; the right panel 
includes only clusters outside of Kigali. Solid and dashed red lines indicate the regression line and 95% confidence 
intervals. 
  



 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
SM Fig. 7. Comparison of satellite night-light data to phone-based estimates of electrification. (A) Map of 
Rwanda showing night-time luminosity, as captured by satellites orbiting the earth (NOAA National Geophysical 
Data Center). (B) Enlargement of satellite imagery in the region near Kigali, the capital of Rwanda. (C) Predicted 
household electrification, based on call records, using a model fit on how 856 survey respondents answered the 
question, “Does your household have electricity?” and projected onto the full population of mobile subscribers. 
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SM Fig. 8. Phone-based wealth predictions accurately interpolate between traditional rounds of household 
surveys. Each of Rwanda’s 30 districts is represented as a line, where the values in 2007 and 2010 are calculated 
using household survey data from the Rwandan Demographic and Health Surveys (DHS) of 7,377 and 12,792 
households, respectively. The value in 2009 is computed from the mobile phone call detail records (CDR) of 
roughly 1.5 million subscribers in Rwanda, using a predictive model calibrated on a sample of 856 survey 
respondents. Every fifth district (ordered by predicted wealth in 2009) is colored to highlight changes over time of 
six different districts. 
 

Legend
 



References and Notes 
1. S. Kuznets, Economic growth and income inequality. Am. Econ. Rev. 45, 1–28 (1955). 

2. G. S. Fields, Changes in poverty and inequality in developing countries. World Bank Res. Obs. 
4, 167–185 (1989). doi:10.1093/wbro/4.2.167 

3. M. Jerven, Poor Numbers: How We Are Misled by African Development Statistics and What to 
Do About It (Cornell Univ. Press, Ithaca, NY, 2013). 

4. C. Elbers, J. O. Lanjouw, P. Lanjouw, Micro-level estimation of poverty and inequality. 
Econometrica 71, 355–364 (2003). doi:10.1111/1468-0262.00399 

5. M. Ghosh, J. N. K. Rao, Small area estimation: An appraisal. Stat. Sci. 9, 55–76 (1994). 
doi:10.1214/ss/1177010647 

6. D. Lazer, A. Pentland, L. Adamic, S. Aral, A.-L. Barabási, D. Brewer, N. Christakis, N. 
Contractor, J. Fowler, M. Gutmann, T. Jebara, G. King, M. Macy, D. Roy, M. Van 
Alstyne, Computational social science. Science 323, 721–723 (2009). Medline 
doi:10.1126/science.1167742 

7. G. King, Ensuring the data-rich future of the social sciences. Science 331, 719–721 (2011). 
Medline doi:10.1126/science.1197872 

8. N. Eagle, M. Macy, R. Claxton, Network diversity and economic development. Science 328, 
1029–1031 (2010). Medline doi:10.1126/science.1186605 

9. H. Choi, H. Varian, Predicting the present with Google Trends. Econ. Rec. 88, 2–9 (2012). 
doi:10.1111/j.1475-4932.2012.00809.x 

10. W. Wang, D. Rothschild, S. Goel, A. Gelman, Forecasting elections with non-representative 
polls. Int. J. Forecast. 31, 980–991 (2015). doi:10.1016/j.ijforecast.2014.06.001 

11. “The mobile economy 2014” (GSMA Intelligence, 2014); 
www.gsmamobileeconomy.com/GSMA_ME_Report_2014_R2_WEB.pdf. 

12. J. Candia, M. C. González, P. Wang, T. Schoenharl, G. Madey, A.-L. Barabási, Uncovering 
individual and collective human dynamics from mobile phone records. J. Phys. A 41, 
224015 (2008). doi:10.1088/1751-8113/41/22/224015 

13. J.-P. Onnela, J. Saramäki, J. Hyvönen, G. Szabó, D. Lazer, K. Kaski, J. Kertész, A. L. 
Barabási, Structure and tie strengths in mobile communication networks. Proc. Natl. 
Acad. Sci. U.S.A. 104, 7332–7336 (2007). Medline doi:10.1073/pnas.0610245104 

14. G. Palla, A. L. Barabási, T. Vicsek, Quantifying social group evolution. Nature 446, 664–667 
(2007). Medline doi:10.1038/nature05670 

15. M. C. González, C. A. Hidalgo, A.-L. Barabási, Understanding individual human mobility 
patterns. Nature 453, 779–782 (2008). Medline doi:10.1038/nature06958 

16. X. Lu, E. Wetter, N. Bharti, A. J. Tatem, L. Bengtsson, Approaching the limit of 
predictability in human mobility. Sci. Rep. 3, 2923 (2013). Medline 
doi:10.1038/srep02923 

http://dx.doi.org/10.1093/wbro/4.2.167
http://dx.doi.org/10.1111/1468-0262.00399
http://dx.doi.org/10.1214/ss/1177010647
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=19197046&dopt=Abstract
http://dx.doi.org/10.1126/science.1167742
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=21311013&dopt=Abstract
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=21311013&dopt=Abstract
http://dx.doi.org/10.1126/science.1197872
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=20489022&dopt=Abstract
http://dx.doi.org/10.1126/science.1186605
http://dx.doi.org/10.1111/j.1475-4932.2012.00809.x
http://dx.doi.org/10.1016/j.ijforecast.2014.06.001
http://www.gsmamobileeconomy.com/GSMA_ME_Report_2014_R2_WEB.pdf
http://dx.doi.org/10.1088/1751-8113/41/22/224015
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=17456605&dopt=Abstract
http://dx.doi.org/10.1073/pnas.0610245104
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=17410175&dopt=Abstract
http://dx.doi.org/10.1038/nature05670
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=18528393&dopt=Abstract
http://dx.doi.org/10.1038/nature06958
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=24113276&dopt=Abstract
http://dx.doi.org/10.1038/srep02923


17. J. E. Blumenstock, Inferring patterns of internal migration from mobile phone call records: 
Evidence from Rwanda. Inf. Technol. Dev. 18, 107–125 (2012). 
doi:10.1080/02681102.2011.643209 

18. V. Frias-Martinez, J. Virseda, in Proceedings of the Fifth International Conference on 
Information and Communication Technologies and Development (Association for 
Computing Machinery, New York, 2012), pp. 76–84; 
http://doi.acm.org/10.1145/2160673.2160684. 

19. P. Deville, C. Linard, S. Martin, M. Gilbert, F. R. Stevens, A. E. Gaughan, V. D. Blondel, A. 
J. Tatem, Dynamic population mapping using mobile phone data. Proc. Natl. Acad. Sci. 
U.S.A. 111, 15888–15893 (2014). Medline doi:10.1073/pnas.1408439111 

20. G. C. Cawley, N. L. C. Talbot, On over-fitting in model selection and subsequent selection 
bias in performance evaluation. J. Mach. Learn. Res. 11, 2079–2107 (2010). 

21. D. Filmer, L. H. Pritchett, Estimating wealth effects without expenditure data—or tears: An 
application to educational enrollments in states of India. Demography 38, 115–132 
(2001). Medline 

22. J. Blumenstock, N. Eagle, Divided we call: Disparities in access and use of mobile phones in 
Rwanda. Inf. Technol. Int. Dev. 8, 1–16 (2012). 

23. H. Zou, T. Hastie, Regularization and variable selection via the elastic net. J. R. Stat. Soc. 
Ser. B 67, 301–320 (2005). doi:10.1111/j.1467-9868.2005.00503.x 

24. L. Breiman, J. Friedman, C. J. Stone, R. A. Olshen, Classification and Regression Trees 
(Chapman and Hall/CRC Press, New York, ed. 1, 1984). 

25. B. Abelson, K. R. Varshney, J. Sun, in Proceedings of the 20th ACM SIGKDD International 
Conference on Knowledge Discovery and Data Mining (Association for Computing 
Machinery, New York, 2014), pp. 1563–1572; 
http://doi.acm.org/10.1145/2623330.2623335. 

26. National Institute of Statistics of Rwanda (NISR) [Rwanda], Ministry of Health (MOH) 
[Rwanda], ICF International, “Rwanda Demographic and Health Survey 2010,” DHS 
Final Reports (publication ID FR259, NISR, MOH, and ICF International, Calverton, 
MD, 2012). 

27. M. Jerven, “Benefits and costs of the data for development targets for the post-2015 
development agenda,” in Data for Development Assessment Paper (Copenhagen 
Consensus Center, 2014). 

28. Y.-A. de Montjoye, L. Radaelli, V. K. Singh, A. S. Pentland, Unique in the shopping mall: 
On the reidentifiability of credit card metadata. Science 347, 536–539 (2015). Medline 
doi:10.1126/science.1256297 

29. A. Wesolowski, C. O. Buckee, L. Bengtsson, E. Wetter, X. Lu, A. J. Tatem, Commentary: 
Containing the ebola outbreak - the potential and challenge of mobile network data. 
PLOS Curr. 10.1371/currents.outbreaks.0177e7fcf52217b8b634376e2f3efc5e (2014). 
Medline doi:10.1371/currents.outbreaks.0177e7fcf52217b8b634376e2f3efc5e 

30. J. Blumenstock, N. Eagle, “Mobile divides: Gender, socioeconomic status, and mobile phone 
use in Rwanda,” in Proceedings of the 4th ACM/IEEE International Conference on 

http://dx.doi.org/10.1080/02681102.2011.643209
http://doi.acm.org/10.1145/2160673.2160684
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=25349388&dopt=Abstract
http://dx.doi.org/10.1073/pnas.1408439111
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=11227840&dopt=Abstract
http://dx.doi.org/10.1111/j.1467-9868.2005.00503.x
http://doi.acm.org/10.1145/2623330.2623335
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=25635097&dopt=Abstract
http://dx.doi.org/10.1126/science.1256297
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=25642369&dopt=Abstract
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=25642369&dopt=Abstract
http://dx.doi.org/10.1371/currents.outbreaks.0177e7fcf52217b8b634376e2f3efc5e


Information and Communication Technologies and Development (Association for 
Computing Machinery, New York, 2010), article no. 6; 
http://doi.acm.org/10.1145/2369220.2369225. 

31. Ministry of Health (MOH) [Rwanda], National Institute of Statistics of Rwanda (NISR), and 
ICF Macro, “Rwanda DHS, 2007-08 - Rwanda Interim Demographic and Health Survey 
(English),” DHS Final Reports (publication ID FR215, MOH, NISR, and ICF Macro, 
Calverton, MD, 2009). 

32. A. Deaton, S. Zaidi, Guidelines for Constructing Consumption Aggregates for Welfare 
Analysis (World Bank Publications, 2002). 

33. H.-P. Kriegel, P. Kröger, E. Schubert, A. Zimek, “A general framework for increasing the 
robustness of PCA-based correlation clustering algorithms,” in Scientific and Statistical 
Database Management, B. Ludäscher, N. Mamoulis, Eds. (Lecture Notes in Computer 
Science Series, Springer, Berlin, Heidelberg, 2008), pp. 418–435. 

34. D. Hillger, T. Kopp, T. Lee, D. Lindsey, C. Seaman, S. Miller, J. Solbrig, S. Kidder, S. 
Bachmeier, T. Jasmin, T. Rink, First-light imagery from Suomi NPP VIIRS. Bull. Am. 
Meteorol. Soc. 94, 1019–1029 (2013). doi:10.1175/BAMS-D-12-00097.1 

35. V. Frias-Martinez, J. Virseda, E. Frias-Martinez, “Socio-economic levels and human 
mobility,” paper presented at the QualMeetsQuant Workshop at the 4th International 
Conference on Information and Communication Technologies and Development, 
London, 13 to 16 December 2010. 

36. J. Blumenstock, Y. Shen, N. Eagle, “A method for estimating the relationship between phone 
use and wealth,” paper presented at the QualMeetsQuant Workshop at the 4th 
International Conference on Information and Communication Technologies and 
Development, 13 to 16 December 2010. 

37. A. Decuyper et al., http://arxiv.org/abs/1412.2595 (2014). 

38. T. Gutierrez, G. Krings, V. D. Blondel, http://arxiv.org/abs/1309.4496 (2013). 

39. M. O. Rabin, D. Scott, Finite automata and their decision problems. IBM J. Res. Develop. 3, 
114–125 (1959). doi:10.1147/rd.32.0114 

40. V. D. Blondel, A. Decuyper, G. Krings, http://arxiv.org/abs/1502.03406 (2015). 

41. R. Tibshirani, Regression shrinkage and selection via the lasso. J. R. Stat. Soc. Ser. B 58, 
267–288 (1996). 

42. T. Hastie, R. Tibshirani, J. Friedman, The Elements of Statistical Learning: Data Mining, 
Inference, and Prediction (Springer Series in Statistics, Springer, New York, 2009), vol. 
2. 

43. B. Efron, R. Tibshirani, Improvements on cross-validation: The 632+ bootstrap method. J. 
Am. Stat. Assoc. 92, 548–560 (1997). 

44. R. Ahas, S. Silm, O. Järv, E. Saluveer, M. Tiru, Using mobile positioning data to model 
locations meaningful to users of mobile phones. J. Urban Technol. 17, 3–27 (2010). 
doi:10.1080/10630731003597306 

http://doi.acm.org/10.1145/2369220.2369225
http://dx.doi.org/10.1175/BAMS-D-12-00097.1
http://arxiv.org/abs/1412.2595
http://arxiv.org/abs/1309.4496
http://dx.doi.org/10.1147/rd.32.0114
http://arxiv.org/abs/1502.03406
http://dx.doi.org/10.1080/10630731003597306


45. J. V. Henderson, A. Storeygard, D. N. Weil, Measuring economic growth from outer space. 
Am. Econ. Rev. 102, 994–1028 (2012). Medline doi:10.1257/aer.102.2.994 

46. X. Chen, W. D. Nordhaus, Using luminosity data as a proxy for economic statistics. Proc. 
Natl. Acad. Sci. U.S.A. 108, 8589–8594 (2011). Medline doi:10.1073/pnas.1017031108 

47. Y.-A. de Montjoye, J. Kendall, C. F. Kerry, “Enabling humanitarian use of mobile phone 
data,” in Issues in Technology Innovation (Brookings Center for Technology Innovation, 
2014); http://dspace.mit.edu/handle/1721.1/92821. 

48. V. Alatas, A. Banerjee, R. Hanna, B. A. Olken, J. Tobias, Targeting the poor: Evidence from 
a field experiment in Indonesia. Am. Econ. Rev. 102, 1206–1240 (2012). Medline 
doi:10.1257/aer.102.4.1206 

49. J. P. Bagrow, D. Wang, A.-L. Barabási, Collective response of human populations to large-
scale emergencies. PLOS ONE 6, e17680 (2011). Medline 
doi:10.1371/journal.pone.0017680 

50. J. E. Blumenstock, N. Eagle, M. Fafchamps, “Risk sharing and mobile phones: Evidence in 
the aftermath of natural disasters,” Working paper (2014); 
www.jblumenstock.com/files/papers/jblumenstock_mobilequakes.pdf. 

51. D. Lazer, R. Kennedy, G. King, A. Vespignani, The parable of Google Flu: Traps in big data 
analysis. Science 343, 1203–1205 (2014). Medline doi:10.1126/science.1248506 

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=25067841&dopt=Abstract
http://dx.doi.org/10.1257/aer.102.2.994
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=21576474&dopt=Abstract
http://dx.doi.org/10.1073/pnas.1017031108
http://dspace.mit.edu/handle/1721.1/92821
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=25197099&dopt=Abstract
http://dx.doi.org/10.1257/aer.102.4.1206
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=21479206&dopt=Abstract
http://dx.doi.org/10.1371/journal.pone.0017680
http://www.jblumenstock.com/files/papers/jblumenstock_mobilequakes.pdf
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=24626916&dopt=Abstract
http://dx.doi.org/10.1126/science.1248506

