
CompilingQuestions into BalancedQuizzes about Documents
Cristina Menghini

∗

Sapienza University of Rome

menghini@dis.uniroma1.it

Jessica Dehler Zufferey

Coorpacademy

jessica.dehler@coorpacademy.com

Robert West

EPFL

robert.west@epfl.ch

ABSTRACT
In the educational framework, knowledge assessment is a critical

component, and quizzes (sets of questions with concise answers)

are a popular tool for this purpose. This paper focuses on the gen-

eration of balanced quizzes, i.e., quizzes that relate to a given set of

documents, and to the central concepts described by the documents,

in an evenly distributed manner. Our approach leverages a graph

representing the relationships between questions, documents, and

concepts, and phrases quiz construction as a node selection problem

in this graph. We provide algorithms for constructing the graph and

for selecting a good set of quiz questions. In our concrete implemen-

tation, we build quizzes for a collection of Wikipedia articles and

evaluate them both with simulated students and with real human

quiz takers, finding that our balanced quizzes are better suited at

determining which articles the user has not read (corresponding to

their knowledge gaps) than reasonable baselines.
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1 INTRODUCTION
Quizzes have played an important role in education for a long time.

As opposed to more extensive forms of knowledge assessment, such

as essays, quizzes have the advantage of testing knowledge about

specific questions in a concise way. For this reason, with the rise

of massive open online courses (MOOCs), which require scalable

yet effective ways of assessing student knowledge, quizzes have

recently been gaining further importance.

In this paper, we define a quiz as a set of questions requiring

students to provide answers either by selecting from a set of several

candidates (multiple choice) or in the form of a short free-form re-

sponse. Building quizzes implies two tasks: (1) generating candidate

questions from a set of documents (e.g., lectures or encyclopedic

articles); (2) selecting a small subset of the candidate questions.

Previous work has mainly focused on generating candidate ques-

tions (task 1) from various sources, such as Wikipedia articles

∗
Work performed partly at EPFL, with support from ERC Advanced Grant 788893

AMDROMA “Algorithmic and Mechanism Design Research in Online Markets”.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

CIKM ’18, October 22–26, 2018, Torino, Italy
© 2018 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 978-1-4503-6014-2/18/10. . . $15.00

https://doi.org/10.1145/3269206.3269298

[1, 10, 11], text books [4], TED talks [2], or knowledge graphs [9],

mostly addressing task 2 by simply selecting a random subset of

questions [1, 4, 8, 10]. This paper, on the contrary, focuses on task 2,

striving to carefully combine questions into balanced quizzes.

Envisioned use case.We envision the following practical use

case for our method. A teacher wants to instruct her class about

a given topic. She starts by selecting a small set of topic-related

documents (e.g., Wikipedia articles) that she wants her students to

read as homework. She would like students to read all documents
and to retain the most important facts. To achieve this, she gives

them a quiz together with the assignment. In line with her goals,

being able to answer all quiz questions correctly should require

reading all documents (i.e., laziness should not be an option); the

questions should cover the most central aspects of the documents;

and they should at the same time touch upon as many aspects of the

documents as possible in as balanced a way as possible. Under these

conditions, the quiz gives students a natural incentive to complete

the reading assignment as desired by the teacher.

Contributions. The following are the main contributions of

this paper: first, we devise a graph-based way of formalizing the

properties of a good, balanced quiz (Sec. 2); second, we provide

solutions for building the input graph and solving the ensuing

optimization problem (Sec. 3); and finally, we evaluate our method

in a simulation study as well as with real human quiz takers (Sec. 4).

2 PROBLEM FORMULATION
This section describes how we formalize our setting in terms of

a graph (Sec. 2.1) and how we frame quiz construction as a node

selection problem in this graph (Sec. 2.2).

2.1 Representation as a graph
QuDoCo graph.Our central data structure is a tripartite graphG =
(V ,E) whose nodes V represent candidate questions Q , documents

D, and concepts C (i.e., V = Q ∪ D ∪C , hence the name “QuDoCo

graph”; Fig. 1).

Figure 1: QuDoCo graph.

The edges E are defined as fol-

lows: connect a document d ∈ D
to a question q ∈ Q if d contains

the answer to q; connect d to a

concept c ∈ C if d mentions c;
and similarly, connect q to c if q
mentions c . Constructing G for

a given document collection D and pool of candidate questions Q
requires deciding if a given document answers a given question

and extracting the concepts C occurring across documents and

questions. Sec. 3.1 gives details regarding these steps.

2.2 Optimization problem
Given a QuDoCo graph, constructing a k-question quiz corresponds
to selecting a subset S ⊆ Q of size |S | = k . The desirable quiz prop-
erties given in the introduction can be operationalized as follows:
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C1. Laziness avoidance: students should not be able to answer
all quiz questions S without reading all documents.

O1. Concept centrality: quiz questions should be about the

concepts most central to the documents.

O2. Concept balance: quiz questions should relate to concepts

in a balanced fashion (rather than focus on few concepts).

O3. Document balance: similarly, quiz questions should relate

to documents in a balanced fashion.

C1 is a hard constraint, whereas O1–O3 are objectives that must

be traded off against one another; e.g., choosing questions about

the most central concepts (high O1) may yield an unbalanced set

of questions relating to only a few top concepts (low O2).

Dedicated questions. It is easy to see that constraint C1 is

equal to requiring that, for every document d , the quiz S contain

at least one question that is answered by d alone, and by no other

document. We call such a question a “dedicated question” for d .
Our optimization problem is thus to select S ⊆ Q so we

maximize f (S) := w1 f1(S) +w2 f2(S) +w3 f3(S)

subject to |S | ≤ k

and S has a dedicated question for each d ∈ D,

(1)

where fi (S) captures how well the quiz S meets objective Oi , and
where the objectives Oi are traded off with weightswi , which can

be set manually by the teacher, depending on her requirements.

To conclude, we define the fi ’s that formalize objectives O1–O3:

O1. For each concept c ∈ C , we compute a global centrality Γ(c)
capturing how prominent a role c plays across the entire document

collection D, as well as a document-local centrality Γd (c) capturing
how prominent a role c plays in document d (Sec. 3.1 explains how

global and document-local centrality is defined and computed).

Based thereupon, we compute the question-local centrality Γq (c) of
c with respect to question q by summing Γd (c) over all documents d
that answer q. Finally, f1(S) sums up the global and question-local

centralities of all concepts appearing across all questions q ∈ S :

f1(S) =
∑
q∈S

∑
c ∈C :{c,q }∈E

Γ(c) + Γq (c). (2)

O2. To quantify concept balance, we define f2(S) as the fraction
of concepts covered by the selected quiz questions S :

f2(S) =
1

|C |

������⋃q∈S{c ∈ C : {c,q} ∈ E}

������ . (3)

O3. A priori, it would be a good heuristic to pick questions that

have many connections to the documents D, or, in other words,

to maximize the number of edges between S and D, i.e., maximize

д(S) :=
∑
d ∈D nd (S), where nd (S) is the number of edges between

S and document d . While this would result in questions that weave

together many documents, it might focus most questions on a small

subset of documents and neglect others. To encourage an even

spreading of questions over all documents, we may award a smaller

amount for every additional time a document is touched by the

selected questions S : instead of paying a constant amount of 1 for

every time a document is touched (as in the above definition of

д(S)), we may instead pay an amount of 1/i for the i-th time a given

document is touched, resulting in

f3(S) =
∑
d ∈D

nd (S )∑
i=1

1

i
. (4)

3 PROPOSED SOLUTION
In our solution, we need to tackle two challenges: first, we must

specify how to build the QuDoCo graph that serves as input to

the above optimization problem; and second, we are to devise an

algorithm for solving the optimization problem. We address these

issues in Sec. 3.1 and Sec. 3.2, respectively.

3.1 Building the QuDoCo graph
Nodes. The QuDoCo graph has three types of nodes: documents

D, questions Q , and concepts C . The documents D are directly

provided by the teacher, and as mentioned in Sec. 1, generating

candidate questions Q from D is not what this paper is about.

Instead, the candidate questions are also assumed to be given. They

may have been collected by the teacher over the course of the years,

crowdsourced, phrased by students via homework assignments,

or generated automatically (cf. Sec. 1; deep learning methods in

particular have recently been shown to excel at this task [11]).

Finally, concepts C are sourced from the documents via a key-

phrase extraction method inspired by Rousseau and Vazirgiannis

[7], as follows: First, we build a word graph whose nodes are nouns

and adjectives, and whose edges connect two words if they ever ap-

pear within the same 4-gram (edges are directed, following the order

of words in the text). Based on this graph, we compute the Page-

Rank of all words and define the 5% most central nodes as keywords.
Some important phrases consist of more than a single word, so we

repeat the same process with bigrams, rather than single words,

as nodes, thus obtaining key bigrams (we consider only bigrams

that co-occur much more often than by chance, by pre-filtering

them based on their pointwise mutual information). The concept

set C is then defined as the union of keywords and key bigrams.

Their PageRank values also serve as the global and document-local

centralities (Sec. 2.2): when the word graph is constructed based

on the entire corpus D, we obtain the global centrality Γ(c); when
based on a single document d , the document-local centrality Γd (c).

Edges. Edges involving conceptsC (Fig. 1) are easily found: sim-

ply add an edge between a document d (question q) and a concept

c if d (q) mentions c . Edges between questions Q and documents D
are more challenging, as we need to decide whether a document

answers a question. As mentioned above, questions may be gen-

erated via machine learning or crowdsourcing; in these cases, we

would know explicitly from which document d a question q was

generated, so we should certainly add the edge {d,q}. But q might

also be answered by documents other than d , so we need a way of

determining, for any document d ′, if d ′ answers q.
To achieve this, we start from a large dataset of (d,q) pairs, where

d is known to answer q, and train a supervised classifier in order to

generalize to all pairs. In particular, we use the Stanford Questions

Answering Dataset (SQuAD) [6], which contains 100K+ questions

(alongside answers) generated from 500+ Wikipedia articles.

As documents turn out to be too coarse-grained for this task, we

split a document d at the paragraph level, let the classifier predict,
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for each paragraph i , the probability πi that i answers q, and finally
compute the probability πd that d answers q as the probability that

at least one of its paragraphs answers q, i.e., πd = 1 −
∏

i (1 − πi ).
To estimate πi , we train a random forest on features that measure

the similarities between i and q; between i and q’s answer a; and
between q and a. For robustness, the features measure similarities

in multiple ways: Jaccard coefficient, cosine of TF-IDF vectors, and

cosine of word2vec vectors [3]. Results are given in Sec. 4.1.

3.2 Optimization algorithm
Our objective function f (Eq. 1) is a weighted sum of 3 set functions

f1, f2, f3, each of which is easily seen to be monotone (fi (S∪{q}) ≥
fi (S) for all S,q) and submodular (fi (S∪{q})− fi (S) ≥ fi (T ∪{q})−
fi (T ) for S ⊆ T ). As sums of submodular functions are submodular,

f is also submodular. This is desirable, as submodularity formalizes

an intuitive diminishing-returns property: adding the same question

to the solution S later on has less payoff than adding it earlier.

Although maximizing submodular functions under a cardinality

constraint is NP-hard, a greedy algorithm is guaranteed to find a

63%-approximation [5]. Our problem has this form, but we also

have the additional constraint of having to add a dedicated question

for each document (Eq. 1). Hence, we apply a slightly modified

greedy algorithm: act greedily at first (starting from an initially

empty solution S , add at each step the question with the maximum

marginal gain, i.e., argmaxq∈Q\S f (S ∪ {q})), until the number of

documents for which S contains no dedicated question yet equals

our remaining budget k − |S |, at which point we select the highest-

scoring dedicated question for each document that still needs one.

4 EVALUATION
We build quizzes for a collection D of 5 topically coherent Wikipe-

dia articles taken from SQuAD (Sec. 3.1): immunology, immune

system, antibiotics, infections, bacteria. SQuAD contains 849

questions Q about these 5 articles (all SQuAD questions have short

text snippets, e.g., entities, as answers), and our goal is to build a

balanced quiz by selecting a small subset S ⊆ Q of size k = 25. (We

set thewi of Eq. 1 so that the three fi ’s lie in a comparable range.)

In SQuAD, each question q is generated from a single document,

such that, for each q, SQuAD tells us one document that answers

q. But other documents might answer q as well, so we determine

the full set of question–document edges by reading all 5 articles in

detail and manually deciding for each question by which articles it

is answered. Note that this would already suffice for our evaluation

on the above 5 articles, but we certainly could not afford such

a manual effort in a real deployment scenario, so Sec. 4.1 shows

that our classifier for detecting question–document edges (Sec. 3.1)

works well. We then proceed to demonstrate that our quizzes are

better than baselines at detecting whether a student has read all k
articles, and if not, which one they skipped (Sec. 4.2).

4.1 Building the QuDoCo graph
Here we evaluate the random forest (RF) classifier of Sec. 3.1 for

determining if a question q is answered by a document d . As we
manually labeled all (d,q) pairs consisting of our 5 Wikipedia ar-

ticles and the 849 question candidates, we may readily evaluate

precision and recall for a wide range of thresholds on the RF’s

probabilistic output. As a result, we find that (d,q) edges included
in SQuAD are easier to detect than the extra edges we added by

manual inspection; crowd workers who constructed SQuAD seem

to have a bias for generating the most obvious questions: e.g., when

adding edges for which the RF outputs a probability above 80%, we

obtain recall (precision) of 99% (95%) on the SQuAD edges, and 80%

(77%) for our manually added edges. Still, we believe these numbers

are sufficiently high for a real-world deployment of our classifier.

The resulting QuDoCo graph’s connectivity is nontrivial: 78%

of questions are connected to a single document (and could thus

serve as dedicated questions), 12% to 2, 6% to 3, and 4% to 4 or 5. On

average, each question (document) is connected to 3 (10) concepts.

4.2 Detecting unread documents
In the envisioned use case of our quizzes, a teacher asks her students

to peruse a document set D and complements this assignment with

a quiz that covers all of D, incentivizing them to learn about the

most central concepts of D. In this setting, it would be desirable

if she could tell from the quiz results if a student indeed read all

the documents, and if not, which documents they skipped, as this

would allow her to detect likely knowledge gaps on which to focus.

To do so, we compute, for each student s and document d , the
fraction pd of d’s questions that s answered correctly, and we then

rank all documents in increasing order of pd . In the ideal case, the

documents s did not read will have a lower fraction of correctly

answered questions—and thus a lower rank—than those s did read.

Here we evaluate how well our quizzes are suited for detecting

skipped documents in the above way. Concretely, we have students

take quizzes about the above 5 Wikipedia articles, making sure

that, for each student s , there is one article ds they do not read, by

excluding ds from the list of articles we ask s to read. We then com-

pute the rank of ds with respect to the fraction pds of ds ’s correctly
answered questions, and average this rank over all students s . The
lower the average rank of ds , the better.

We perform two evaluations: one with computationally simu-

lated students, the other, with human quiz takers recruited on the

Mechanical Turk crowdsourcing platform. We compare our method

of constructing balanced quizzes to two baselines: a random base-
line that picks k questions from Q uniformly at random, and a

dedicated-question (DQ) baseline that first picks a random ded-

icated question for each document d ∈ D (i.e., a question that can

only be answered byd) and then picksk−|D | questions uniformly at

random. We run each baseline several times and report the average.

Although random selection might seem like a weak baseline,

it is realistic, as it is frequently used in practice (cf. Sec. 1). The

DQ baseline is expected to be a strong competitor under the above

evaluation: the answer to the dedicated question qds of the skipped
document ds is contained only in ds itself, so it is likely not to be

answered correctly by s (unless s already knew the answer before),

which in turn decreases the score pds and thus the rank of ds .
Simulated evaluation. For our simulation, we assume a simple

model, specified by two parameters. The first parameter, α , defines
the probability that a student s discovers the answer to a question q
by reading a document containing the answer. The second parame-

ter, β , defines the probability that s knows the answer to q already

before taking the quiz, i.e., without reading any document. Both α
and β are constant across all s and q; i.e., we assume all questions

have the same difficulty for everyone. Also, we assume documents

are independent of each other with respect to letting s discover
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(c) Balanced quiz

Mean rank Mean %

of unread correct

Method document* answers

Balanced 1.40 [0.88, 1.96] 49%

Dedic.-qu. 1.60 [1.12, 2.08] 42%

Random 2.00 [1.36, 2.60] 38%

*95% confidence intervals in parentheses.

(d) Human evaluation

Figure 2: (a–c) Simulated evaluation results; colors represent mean rank of unread document (lighter colors are better); defini-
tions of α , β in Sec. 4.2. (d) Human evaluation results. Balanced quizzes are best at detecting documents not read by student.

the answer to q, and that knowing the answer ahead of time (β) is
independent of (re)discovering it by reading a document (α ).

The probability of answering correctly a question q whose an-

swer appears in nq documents is thus pq = 1 − (1 − α)nq (1 − β),
and a document d’s expected fraction pd of questions answered

correctly (our ranking criterion) is the average of pq over the nd
quiz questions that d answers: pd =

1

nd
∑
q∈S :{d,q }∈E pq .

The heatmaps in Fig. 2(a–c) plot the mean rank of the skipped

document for our quizzes and for the two baselines as a function of

α and β . As there are 5 documents, the mean rank can take on values

between 0 and 4, with lower values (lighter colors) being better. As

expected, the random baseline performs worst. The DQ baseline, on

the contrary, reveals the skipped document nearly perfectly when

α ≥ 0.5, but does much more poorly for smaller values of α (i.e.,

when the simulated student reads sloppily). Our balanced quizzes,

finally, show the best performance, with the average rank of the

skipped document being 0 for a much wider range of (α , β). Also
note that the upper left triangle of the heatmaps is most meaningful,

since here the probability of discovering an answer when reading

a document is larger than the probability of already knowing the

answer before reading any document. In this regime, unlike the

two baselines, our quizzes show essentially perfect performance.

Human evaluation. The above simulation study, though useful

for initial insights, makes rather strong assumptions. Hence we

also conduct an evaluation involving 75 real human quiz takers,

recruited via Mechanical Turk. We again use the same 5 immunol-

ogy-related articles and require k = 25 questions per quiz. The 75

quiz takers are split evenly over the three methods. We build one

quiz per method, with 25 users taking each quiz. We evaluate each

quiz in 5 conditions (5 users per condition): in each condition, a

different one of the 5 articles is hidden from the user, the other 4

are shown, thus simulating a scenario where the user skips exactly

that document. Users provide their answers as short free-form texts,

and we manually determine the correctness of each answer.

Averaging over the 25 instances of each quiz, we obtain the mean

rank of the skipped document. Fig. 2(d) shows that it is lowest for

our balanced quizzes (1.4), followed by the DQ baseline (1.6), with

the random baseline again performing worst (2.0). (Likely due to

the small sample size of 25 instances per quiz, the differences are

not statistically significant.) The mean ranks are higher than for

most (α , β) in our simulations, probably because the quizzes are

generally rather hard, with less than half of all questions answered

correctly (Fig. 2(d), right column), which induces a lot of noise. Note,

however, that our quizzes are easier to answer (49% of questions

answered correctly on average) than the baselines (42% and 38%).

5 DISCUSSION AND CONCLUSION
This paper presents a method for combining questions about a

document collection into quizzes where questions relate to docu-

ments and concepts in a balanced fashion. Our contribution adds

to previous work, which has mostly concentrated on generating

candidate questions from document collections, whereas our focus

is on compiling candidate questions into meaningful quizzes.

Our approach leverages a graph representing the relationships

between questions, documents, and concepts, and phrases quiz con-

struction as a node selection problem in this graph. We provide a

method for constructing the graph and for selecting a good set of

quiz questions using a greedy algorithm. Our results are promis-

ing, both in a simulation study and in an evaluation with human

quiz takers. Future work should go further both quantitatively and

qualitatively, by conducting experiments with more participants as

well as with students rather than crowd workers, since the latter

might not be representative of real classroom settings.

To further improve our quizzes, future work also should aim to

produce sequences, rather than sets, of questions (such that ques-

tions build on each other and guide students through the documents

in a meaningful order). Finally, it would be useful to extend our

algorithm such that it can produce many different quizzes for the

same document collection, rather than a single optimal one.
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