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Given that measuring food consumption at a population scale is a challenging task, researchers have begun to
explore digital traces (e.g., from social media or from food-tracking applications) as potential proxies. However,
it remains unclear to what extent digital traces reflect real food consumption. The present study aims to
bridge this gap by quantifying the link between dietary behaviors as captured via social media (Twitter)
vs. a food-tracking application (MyFoodRepo). We focus on the case of Switzerland and contrast images of
foods collected through the two platforms, by designing and deploying a novel crowdsourcing framework for
estimating biases with respect to nutritional properties and appearance. We find that the food type distributions
in social media vs. food tracking diverge; e.g., bread is 2.5 times more frequent among consumed and tracked
foods than on Twitter, whereas cake is 12 times more frequent on Twitter. Controlling for the different food
type distributions, we contrast consumed and tracked foods of a given type with foods shared on Twitter.
Across food types, food posted on Twitter is perceived as tastier, more caloric, less healthy, less likely to have
been consumed at home, more complex, and larger-portioned, compared to consumed and tracked foods.
The fact that there is a divergence between food consumption as measured via the two platforms implies
that at least one of the two is not a faithful representation of the true food consumption in the general Swiss
population. Thus, researchers should be attentive and aim to establish evidence of validity before using digital
traces as a proxy for the true food consumption of a general population. We conclude by discussing the
potential sources of these biases and their implications, outlining pitfalls and threats to validity, and proposing
actionable ways for overcoming them.
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mining; Social networking sites; • General and reference→ Empirical studies; Validation.
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1 INTRODUCTION
Diets determine health. Eating healthy helps prevent malnutrition as well as a range of diseases and
conditions, including diabetes, heart disease, stroke, and cancer [46]. In order to be able to improve
diets, researchers and stakeholders need to know what foods people consume, but monitoring diets
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at a population scale is challenging. Traditionally, nutritional studies rely on survey-based methods
[24] employing questionnaires [105] and personal food journals [29, 30, 90], which are prone to
biases, most notably social and cognitive biases, such as false recall and social desirability bias
[15]. Traditional methods are also costly to organize. Researchers and practitioners might not have
access to extensive surveying, and it might be hard to collect reliable statistics—even though a
large and ever-growing [79] portion of the population has access to advanced technology including
smartphones with Internet access [13].

In light of the challenges of traditional methods on the one hand, and the opportunities afforded
by widespread Internet access on the other hand, there is great promise in using passively collected
digital data to estimate food consumption. Digital datasets are unmatched in terms of scale and
immediacy [66, 87], do not rely on self-reports, and do not suffer from biases typical of traditional
methods. Given this potential, researchers have been developing and applying their expertise
to studying diets via passively collected digital data, whose tremendous potential for providing
insights into food consumption has been showcased numerous times [2, 26, 89].

The promises ofWeb and social media data notwithstanding, important methodological questions
remain: Are researchers measuring what they aim to measure? Do digital traces reflect actual food
consumption? Do effects estimated from online signals hold in the offline world? Are predictive
models trained on online signals accurate in the offline world? In other words, the validity of
studying diets with digital data remains opaque.

Online data is not primarily collected with scientific studies in mind and is therefore sometimes
referred to as “found data” [87]. Found data overcomes several of the biases typical of traditional
methods, but may introduce new biases that threaten validity in their own ways [57, 74, 100].
Despite their potential, error-prone and unreliable data and methods may do more harm than good
if handled without the required caution [28]. As our community increasingly relies on large-scale
digital data sources, methods that offer insights into the validity of new measures thus become
increasingly necessary [57].

MyFoodRepo
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Fig. 1. Illustration of bias in perceived tastiness. Perceived tastiness of tweeted food (top) vs. actually
consumed and tracked food (bottom) of type “pizza”. Histograms summarize tastiness scores estimated in our
crowdsourcing framework. As illustrated, tweeted pizzas are perceived as considerably tastier than actually
consumed and tracked pizzas.
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1.1 Research questions
In this spirit, our overall research question asks: Is social media a biased or a truthful mirror of actual
food consumption, as measured via food tracking? We focus on those dietary aspects in particular
that researchers frequently study with social media: food type [34], nutritional properties [2],
and appearance and subjective perception [65]. In order to establish a link between online and
offline dietary behaviors at a population scale, we study images of food that people consumed and
tracked via a food-tracking application, and contrast them with images of food posted on Twitter,
addressing the following specific research questions:
RQ1 Bias of food-type distribution: To what extent do food images posted on Twitter reflect the

types (beef, bread, burger, etc.) of actually consumed food, as measured via food tracking?
RQ2 Biases within food types: For a given food type, to what extent do food images posted on

Twitter reflect the nutritional properties, perceived tastiness, and appearance of actually
consumed and tracked food of that type?

In order to address RQ1, we investigate whether food images posted on Twitter are a faithful
reflection of the types of actually consumed and tracked food or not. A priori, one might envision
the following potential outcomes:

a) “Food images posted on Twitter are a faithful reflection of the types of actually consumed
and tracked food, consistent with the demonstrated potential of Twitter to provide insight
into dietary choices [2].”

b) “Food images posted on Twitter are not a faithful reflection of the types of actually consumed
and tracked food, given a variety of challenges in the practices of social media use for
research [74].”

In order to address RQ2, we investigate whether or not food images posted on Twitter are a
faithful reflection of actually consumed and tracked food in terms of how healthy, caloric, and
tasty-looking the food is. We investigate whether the two sources diverge, and if so, in what
direction. A priori, one might envision the following potential outcomes:

a) “Food images posted on Twitter are a faithful reflection of actually consumed and tracked
food in terms of how healthy, caloric, and tasty the food is, consistent with the demonstrated
potential of Twitter to provide insight into dietary choices [2].”

b) “Tweeted food is healthier, less caloric, and less tasty than consumed and tracked food. Social
media is increasingly used to promote trendy ingredients and recipes, and clean and healthy
eating [25]. Social media inspires and connects people interested in healthy eating [67].”

c) “Tweeted food is less healthy, more caloric, and tastier than consumed and tracked food,
consistent with a documented fetishization of food online. Users share appetizing pictures of
culinary experiences where exaggerated foods such as sugary desserts dominate over more
standard local cuisines [65].”

1.2 Contributions
To the best of our knowledge, ours is the first attempt to investigate the link between online and
offline dietary behaviors by studying food images as measured via two platforms, in our case
Twitter and the MyFoodRepo1 food-tracking app. We design and apply a novel crowdsourcing
framework for estimating biases (Sec. 3), and we perform a case study of food consumption in
Switzerland (Sec. 4). Controlling for location, period, and food types, we contrast an extensive set
of tweeted food images with images of consumed and tracked food.

1https://www.myfoodrepo.org/
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We find that food type distributions among social media foods vs. among consumed and tracked
foods diverge (RQ1, Sec. 4.1). Controlling for the discrepant food-type distributions by studying
food types individually (RQ2, Sec. 4.2), we find that Twitter still provides a biased view of food
consumption asmeasured via food tracking. Tweeted food is, on average across food types, perceived
as more caloric, less healthy, less likely to have been consumed at home, and tastier (example in
Fig. 1), compared to actually consumed and tracked food. For example, on average across food types,
a median-tasty Twitter dish is among the top 26% tastiest MyFoodRepo dishes, and a median-caloric
Twitter dish is among the top 34% most caloric MyFoodRepo dishes. While social media traces can
be a reasonable proxy of tracked consumption for certain foods types (Fig. 5), we find that, overall,
food shared on social media and consumed and tracked food significantly diverge from each other
(Fig. 4a and 5, Table 1).

We discuss the relationship between three distributions: all foods consumed by the general
population, food consumption estimated via MyFoodRepo, and food consumption estimated via
Twitter. The fact that there is a divergence between food consumption measured via the two
platforms—food tracking and social media—implies that at least one of the two is not a faithful
representation of true food consumption in the general Swiss population. We argue that it is less
likely that food tracking is the main source of bias, and we conclude that researchers should be
attentive and try to establish evidence of validity before using digital traces as a proxy for the true
food consumption in the general population.
Measuring biases in digital traces is the first step towards correcting them and drawing valid

conclusions despite their presence [101]. Through a case study of the Twitter and MyFoodRepo
platforms in Switzerland, contrasting tweeted food images with consumed and tracked foods, we
provide grounding and first insights by controlling for location, period, and food types. Our findings
cannot, however, be assumed to generalize globally, and future work should apply our framework
to other populations, other social media platforms and Web traces, and other food tracking apps.
Our study may serve the purpose of a “proof by counterexample”: we have identified one common
setting where there is a bias between two types of digital trace data. Hence, we should assume that
there can be bias in other populations and platforms, too.

We conclude the paper with a discussion (Sec. 5) of how the methods and findings reported here
can inform researchers in their efforts to leverage digital traces for various applications, in the
context of food and beyond.

2 BACKGROUND AND RELATEDWORK
2.1 Estimating food consumption from digital traces
We start by reviewing related work leveraging social media to study nutrition and dietary behaviors.
Studying diets through social media posts has been an active area of CSCW research. Instagram
[41, 72, 78, 93] and Twitter [2, 34, 63, 64, 66, 104] have emerged as particularly promising platforms.
Researchers have studied specific dietary issues and harmful behaviors. In particular, in work with
important implications for the health and well-being of vulnerable populations, researchers studied
reports of eating disorders [19, 75], dietary choices, nutritional challenges in food deserts (places
with poor access to healthy and affordable food) [34], and obesity patterns in online behaviors
[65]. Related work has also studied eating disorder support online communities, quantifying and
predicting disease severity and recovery [20, 32].

Although social media has emerged as a rich data source, food shared or discussed on Instagram
and Twitter might not be representative of food that people actually consume. Researchers have
compared, at a population scale, statistics extracted from tweet text with public health statistics
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regarding the prevalence of obesity and diabetes [2, 65, 86]. However, the content of posted images
and the foods themselves have not been contrasted with actually consumed foods to date.
Beyond social media, researchers have long been applying their expertise to analyze health

and nutrition behaviors using other kinds of digital trace data. First, researchers monitor food
consumption with smartphone tracking applications and wearables [3, 12]. Researchers analyzed
compliance and contextualization of such platforms by investigating perceived and true snacking
and meal consumption [11] and the potential for inferring population-level eating routines [42].
Second, more distant proxies were previously used to analyze nutrition behaviors, including

search engine logs [43, 97, 103], purchase logs [6, 7, 17, 35, 44, 53, 54], online recipes [81, 86, 95, 96,
98, 99], reviewing platforms and websites [23, 31, 48, 80, 102], crowdsourcing platforms [36, 52],
and geolocation signals [83]. While food shared on social media might not be representative of
consumed food, the above-listed, more distant proxies make it even harder to determine validity.
For example, do recipe searches on search engines correspond to eating the food? Does reading an
online recipe imply that the food was prepared and consumed? It is unknown to what extent such
proxies imply food consumption, and it is not clear whether studies of food consumption via such
digital traces truly measure the quantities intended to be measured.

In more distantly related research, researchers have been utilizing user-generated food content
to train and develop machine learning models. Current AI applications that use online food images
include mining food photos to perform segmentation [73], recognize food [9, 14, 85, 106], learn
food and recipe embeddings [88], and perform calorie [71] and nutrient [39] estimation. However,
if the food that people consume is systematically different from food shared online, models trained
and evaluated on online datasets might not generalize to real-world scenarios.

2.2 Biases of studying digital traces
Next, we review related work studying biases of digital traces. The goal of measurements using
behavioral trace data is to extract meaning from raw data that most often was not collected with
the extraction of scientific insight in mind. Data-driven research has thus been criticized for asking
questions that appear to be opportunistically answerable with the data at hand, overlooking different
types of biases [45].
Lazer et al. [57] argue that the digital traces need to be linked to known constructs before we

can use the data to answer scientific questions. Thus, the key challenge of studying digital data is
determining whether measurements accurately capture the construct that one would ideally want
to examine. For example, if one is measuring physical activity based on mobile phone location
traces, how consequential is the omission of stationary activities such as treadmill or yoga [57]? If
one is tracking influenza with Web search logs of symptoms, how consequential are searches from
persons not experiencing any symptoms [58]?
The mismatch between the theoretical understanding of a concept and its operationalization,

known as the issue of construct validity, can have harmful consequences [100]. In particular, when
data that allows for measurement (e.g., arrest records) does not properly match the actual social
construct that the measurement is intended to capture (e.g., a criminal act), measurements can
replicate, mask, or exacerbate existing social issues [28].
Related work has thus aimed to establish the validity of studying human behaviors with Web

and social media traces. Example studies include studying the validity of screening depression [55],
location traces [51], inferring political approval [91], sentiment analysis [76], or using Twitter’s
APIs [70]. De Choudhury et al. [33] have studied seeking and sharing health information online
by comparing search engines and social media. Researches have also studied decisions around
whether to post content online [1], political, racial and gender biases in Web systems [47, 56], and
how Web systems influence offline user behavior [8].
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Further related work includes studies that issue calls to carefully scrutinize the use of social media
data against biases and provide practical advice to aid researchers in performing their data-driven
studies. Sen et al. [92] proposed a total error framework for digital traces of human behavior on
online platforms, Olteanu et al. [74] identified a variety of challenges in the practices of social
media use for research, and Hofman et al. [50] advocated for measuring the extent to which causal
estimates made in one domain transfer to another domain. Whereas related work [74, 82, 92] aims
to put the biases into a unified framework cutting through different domains, we aim to specifically
establish the validity of estimating food consumption from digital traces.

3 DATA AND METHODS
3.1 Food tracked via MyFoodRepo
To get as close as possible to capturing true food consumption, we use a novel dataset of food images
collected via the MyFoodRepo mobile app [69]. By design, the food present in these images was
actually consumed, for the purpose of the application is to track users’ personal food consumption.
Through the app, volunteer users from Switzerland are asked to provide images of their complete
daily food intake, mainly in the context of being enrolled in a digital cohort called Food & You
[37].2 MyFoodRepo thus captures all foods that compliant individuals consume, in any context.
The images are publicly available as part of the Food Recognition Challenge.3 The dataset has

been annotated such that the individual foods are mapped onto an ontology of food types. Images
were logged between 2017 and 2020. In our analyses, we study the training-set portion of the
dataset, comprising 24,120 images, along with their corresponding 39,328 food-type annotations.

3.2 Food shared on Twitter
To answer the question of whether images shared on social media diverge from food consumption
as measured via food tracking, we aim to contrast images of consumed and tracked food with
images of food posted on social media. To this end, we curate a dataset of food images shared
on Twitter in Switzerland during the same period spanned by the images collected via the food
tracking app, this way controlling for location and time.

Since our goal is to investigate the validity of studying diets with social media, in our Twitter data
collection strategy, we, first, aim to follow data collection methods present in the existing literature
closely, to be able to make conclusions that can be relevant for researchers working in this area, as
opposed to inventing novel strategies that would be less relevant. Our data collection pipeline is
therefore similar to pipelines described in related work, extracting nutritional information from
social media posts with keywords (Sec. 2). Note that, since we follow existing work, specific data
collection decisions are not limitations per se. Instead, the impact of data collection based on
user-specified keywords is intended to be measured, since this is how researchers usually collect
Twitter posts to study food consumption.

Second, we aim to gather a complete dataset, i.e., to collect all food images posted on Twitter
by the relevant population in the relevant time frame. To this end, we use the full-archive search
endpoint, available to researchers via Twitter’s Academic Research product track,4 which allows
searching Twitter’s complete archive going back until March 2006.

Third, we aim to find images posted on Twitter that actually contain food, as we are interested
in studying the posted food itself, rather than only how it is described. To this end, we apply

2https://www.digitalepidemiologylab.org/projects/food-and-you
3https://www.aicrowd.com/challenges/food-recognition-challenge
4https://developer.twitter.com/en/docs/twitter-api/tweets/search/
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automated and manual annotation of the collected images. With these three goals in mind, we
employ the following data collection pipeline.
Step 1: Twitter data collection..We start from the set of MyFoodRepo image annotations (e.g., “bread”,
“banana”). We remove drinks and merge small types that are similar, obtaining 155 food types.
We map each type to suitable handcrafted high-precision keywords, translate the keywords from
English to German, French, and Italian (the large Swiss national languages) via Google Translate,
and use the disjunction (“OR”) of keywords (separately per language) to query Twitter’s full archive
search API for the respective food type. We thus obtain all posts that in the text contain at least one
of the keywords related to the food, in one of the four languages, in either singular or plural form
(if relevant). For example, for the type “bread”, we retrieve all English tweets containing “bread”
or “breads”, French tweets containing “pain” or “pains”, Italian tweets containing “pane” or “pani”,
and German tweets containing “Brot” or “Brote”. Additional restrictions ensure that tweets were
posted between 2017 and 2020 (the period when images of MyFoodRepo food were logged) from a
location in Switzerland and contain at least one image. This step yields 33,425 unique images.
Step 2: Automated annotation..We are interested in studying the foods themselves, so we make sure
that images indeed contain food. To that end, we perform detection of food in images with the
ResNet50 model trained on ImageNet [49], which we finetuned for food-vs.-not-food classification
on the publicly available Food-5K food image dataset [94], with 98% recall and 96% precision on the
task of detecting food images on the held out 20% test set (using a threshold of 𝑝 = 0.5). Inspection
of the images revealed that the images that do not contain food most frequently occur in food
types where keywords have homonymous meanings. Two food types with the largest fraction of
images that do not contain food are “date” (which can signify a fruit or “day of a year” or “social
appointment”) and “apple” (which can signify a fruit or Apple Inc. and its products). After this step,
we keep 7,723 tweets with images that contain food.
Step 3: Manual annotation..We manually inspect the images to verify that an image contains the
food that the user mentions in the tweet text, even if a small quantity. The visible food item needs to
be edible, e.g., a silver pendant of lemon shape or a carved and decorated Halloween pumpkin does
not qualify. Additionally, the image needs to contain a prepared dish, and not all the ingredients
laid out separately, nor an uncooked caught fish. Finally, no explicit content can be present in the
background for the image to be safe for crowd workers.

Due to the completeness of Twitter’s full archive search and the manual inspection of collected
images, at the end of the above process, we obtain all tweets posted from Switzerland between 2017
and 2020 with images that contain a food that is mentioned in the tweet text, for a total of 3,692
images of food along with their corresponding 4,481 food-type annotations.
In summary, the two datasets we analyze contain 24,120 images of consumed and tracked food

and 3,692 images of tweeted food. Images are mapped on the food-type level and contain foods that
we can compare in order to address our research questions. See Fig. 2 for examples of images of
type “pizza”.

Having described the data, we continue by outlining our crowdsourcing framework for measuring
biases. We then describe how we implement this framework on Amazon Mechanical Turk.

3.3 Crowdsourcing framework for estimating biases
Beyond food types, previous work (Sec. 2) has most notably used social media to estimate nutritional
properties of food [2], as well as its appearance and perception [65]. Based on these themes, we
operationalize four pertinent dimensions along which we contrast tweeted and consumed and
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tracked food, capturing how (1) healthy, (2) tasty, (3) caloric, and (4) likely to have been consumed
at home the food is.

For each dimension, we aim to estimate a score for each image. Contrasting the scores of tweeted
vs. consumed and tracked food then allows us to assess biases. In principle, we could obtain scores
directly via human annotation by asking, e.g., “How tasty does this dish look, on a scale from 1 to
10?” It is, however, challenging for humans to place items on an interval scale that is consistent
across individuals [5]. Based on the fact that judging between two alternatives is generally easier
and more intuitive for humans [21], we instead adopt a pairwise paradigm, where we confront
human raters with pairwise choices (e.g., “Which of these two dishes looks tastier?”) and later infer
latent scores from the pairwise preferences.

Consider a given dimension (we use tastiness for concreteness in the following exposition) and a
given food type. Then, for two images 𝑎 and 𝑏 showing food of the same type, we use the notation
“𝑎 ≻ 𝑏” to express that 𝑎 is preferred over 𝑏 by a human rater. Note that human preference is a
random variable: different raters may have different preferences with respect to a given pair. We
assume, however, that certain images show inherently tastier dishes and are thus more likely to be
preferred. More formally, following the Bradley–Terry (BT) model [16], we assume that each image
𝑖 has a latent tastiness score 𝑠 (𝑖) and that the probability that a rater will prefer image 𝑎 over image
𝑏 [image 𝑏 over image 𝑎] in a pairwise comparison is proportional to the score of 𝑎 [score of 𝑏]:

Pr(𝑎 ≻ 𝑏) = 𝑠 (𝑎)
𝑠 (𝑎) + 𝑠 (𝑏) . (1)

Given this setup, maximum likelihood estimation [62] can be used in order to infer the latent scores
that best explain the empirically observed pairwise preferences. Thus, although only pairwise
choices are made by humans, we can rank all images in a total order based on their latent scores 𝑠 .
The BT model is appropriate for our purposes, as it has a well-understood interpretation and is
well-suited to model human preferences [21]. In practice, we fit a so-called Plackett–Luce model
[62], a generalization of BT that does not require comparisons for all image pairs.

3.4 Implementation on Amazon Mechanical Turk
In the remainder of this section, we describe how we implemented the above-described framework
on Amazon Mechanical Turk. To estimate the latent scores of images of MyFoodRepo and of Twitter
food in terms of the four dimensions, we selected 24 well-represented food types (Fig. 5a). The
types are selected such that each type has at least 50 tweeted and at least 50 consumed and tracked
food images. The different food types are considered as independent “tournaments”, so we obtained
a separate ranking per type.
We first sampled the same number of tweeted food images and consumed and tracked food

images per type, to account for potentially different food-type frequencies. Recall that location and
period are already controlled for in the data collection. We randomly sampled 100 images from
each type, 50 tweeted images and 50 images of consumed and tracked foods, resulting in 2,400
competing images in total.

We then performed random sampling of comparison pairs. From each set of images for a given
food type, we sampled 𝑁 pairwise comparisons, each time randomly sampling one image of
consumed and tracked food and one image of tweeted food, constrained such that each image
participates in the same number of comparisons.We chose the number of “duels” per food type based
on rank inference simulations, with the goal of ensuring that we can infer true ranks accurately, as
follows. We assumed 100 items divided into two groups with item quality sampled from the standard
normal distribution. We ranked the items and then randomly sampled 𝑁 comparisons between
items from the two groups. We sampled the outcome of a duel based on the items’ quality scores
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100th) images with respect to estimated rank in how healthy, caloric, likely to have been consumed at home, and tasty the
food is. Twitter food ranks are marked in blue and consumed food in orange.

15

Fig. 2. Example food images of type “pizza”. The overall top five (rank 1st–5th, left) and overall bottom
five (rank 96th–100th, right) images with respect to estimated rank according to four criteria (one criterion
per row). Twitter foods are marked in blue and MyFoodRepo foods, in orange.

and estimated quality and rank with a BT model (Eq. 1). Fig. 3 depicts how well the true ranking
can be recovered for different numbers 𝑁 of comparisons. As more comparisons are performed,
the estimated rank (𝑦-axis) correlates more strongly with the ground-truth rank (𝑥-axis). Based on
these results, we chose to perform 10 comparisons per image (𝑁 = 500, Kendall’s 𝜏 = 0.80). That
is, at 𝑁 = 500, each of the 50 images is compared to 10 competitors, and rank can be accurately
inferred with Kendall’s 𝜏 = 0.80.
In every rating task, a participant was shown a random pair of images containing food of the

same type (images in a pair were scaled to the same size and shown in randomized order), and
asked to give a preference label for each of the four dimensions (healthiness, tastiness, caloric
content, likelihood to be consumed at home). The pairwise comparison task had no neutral option;
participants were required to choose one image. As the order within pairs was randomized, this is
a valid way of breaking ties, and recommended practice [77]. Additionally, we asked participants
to explain how they perceived both images by providing between one and three free-form tags
(e.g., “dull”, “greasy”). (Prior to data collection, we did not make hypotheses about specific biases as
revealed by the tags, but rather explore them post-hoc in order to gain insights about how people
describe the appearance of tweeted vs. consumed and tracked food.) In total, we collected 12,000
pairwise comparisons (500 duels for each of 24 types) for each of the four dimensions.
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Fig. 3. Determining a sufficient number of comparison pairs via rank reconstruction simulations.
Ground truth rank (𝑥-axis) and estimated rank (𝑦-axis), for varying number of comparisons (𝑁 ). In our
subsequent analysis, we chose to perform 10 comparisons per image (𝑁 = 500).

3.4.1 Participants. Since the tasks require reading and writing text in English, participants were
restricted to those residing in the United States, Canada, or the United Kingdom. To ensure high-
quality answers, we admitted only workers with approval rates greater than 99% and with more
than 1,000 previously approved tasks. We collected the 12,000 pairwise preferences through 24
batches with 500 assignments each, over the course of five days. The task was performed by 595
distinct workers, who performed 20.2 pairwise comparisons each, on average.

3.4.2 Compensation. We targeted a pay rate of $9 per hour. Participants were paid $0.15 per pair-
wise comparison. The mode of the time taken per comparison was 57 seconds, which corresponds
to an estimated hourly rate of $9.50 (the U.S. federal minimum hourly wage in 2021 was $7.25
per hour, for reference). Note that this is likely an underestimate of the hourly rate since crowd
workers often use scripts that make it possible to automatically accept a task they are interested in,
and hold it assigned while not actively working on it.

3.4.3 Instructions. To ensure reproducibility of our experiment, below we quote the instructions
as they were displayed to participants:

Please take a look at the two images displayed below. Please focus on the food itself, and not the
other contents of the image. Answer the questions about the pizza shown in the images by
entering either 1 for Image 1, or 2 for Image 2. Additionally, please explain your preferences by
adding at least one word or short phrase to describe the foods appearing in each image.
Write a word or a short phrase, and not full sentences.

1: Which image contains pizza that appears more tasty?
2: Which image contains pizza that appears more healthy?
3: Which image contains pizza that appears more caloric?
4: Which image contains pizza that appears more likely to have been consumed at home?
5: Pizza shown in Image 1 is . . .
(Add a word or a short phrase to describe food in Image 1)
6: Pizza shown in Image 2 is . . .
(Add a word or a short phrase to describe food in Image 2)
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4 RESULTS
4.1 RQ1: Bias of food-type distribution
To address RQ1, we start by comparing MyFoodRepo food images with images of foods posted on
Twitter. We compare the prevalence of the 155 food types across the two sets (Fig. 4a).

First, we observe a significant positive correlation (Spearman’s rank correlation coefficient
𝜌 = 0.49, 𝑝 = 8.5× 10−11). The more frequent a food type is among consumed and tracked foods, the
more frequent it tends to be among tweeted foods. That said, although food type frequencies are
correlated, important deviations can be observed. For instance, bread and butter are more likely to be
observed in MyFoodRepo foods compared to Twitter foods, i.e., these foods are underrepresented on
Twitter. Bread is 2.5 times more frequent among MyFoodRepo foods, while butter is 5.5 times more
frequent among MyFoodRepo foods. On the other hand, cake, soup, chocolate, raclette, burgers,
etc., are more likely to be observed among Twitter foods, compared to MyFoodRepo foods, i.e.,
these foods are overrepresented on Twitter. Soup is 11.5 times, cake 12.0 times, burger 10.0 times,
and raclette 9.5 times more frequent among Twitter foods.

4.2 RQ2: Biases within food types
4.2.1 Duel outcomes. Controlling for the different food-type distributions, we address RQ2, which
is concerned with biases within fixed food types. As an initial look into the duel outcomes, across
all duels, we first consider the fraction where the Twitter image won. Together with this fraction,
we report 𝑝-values from two-sided binomial tests, where the null hypothesis is that the outcome
of comparisons is random, i.e., that the Twitter image wins in 50% of duels. Across all duels, in
58.46% of duels the Twitter image is chosen as more caloric (𝑝 < 10−70), in 45.96% as more healthy
(𝑝 < 10−10), in 38.08% as more likely to have been consumed at home (𝑝 < 10−140), and in 61.73%
as more tasty (𝑝 < 10−100).5

4.2.2 Bias measurement: score estimations. Next, in order to compare images, as opposed to the
outcomes of duels, we fit the BT model (Eq. 1) on the collected preferences and estimate a score
that represents the latent quality of each competing image concerning how healthy, tasty, caloric,
and likely to have been consumed at home the food appears.
Consider a given dimension (we again use tastiness for concreteness). Let each MyFoodRepo

image 𝑖 ∈ {1, ..., 𝑁𝑀 } have a an estimated tastiness score 𝑠 (𝑖), and each Twitter image 𝑗 ∈ {1, ..., 𝑁𝑇 }
have an estimated tastiness score 𝑠 ( 𝑗). The tastiness bias 𝑏 (𝑇,𝑀) between food consumption
measured with Twitter and food consumption measured with MyFoodRepo can be expressed as
the difference in the average estimated tastiness scores measured via the respective data sources, 𝑇
and𝑀 :

𝑏 (𝑇,𝑀) = 𝑇 −𝑀 =
1
𝑁𝑇

𝑁𝑇∑
𝑖=1

𝑠 (𝑖) − 1
𝑁𝑀

𝑁𝑀∑
𝑗=1

𝑠 ( 𝑗). (2)

The measured bias 𝑏 (𝑇,𝑀) (with 95% confidence intervals obtained via bootstrap resampling
of images) is 0.52 [0.46, 0.56] for “tasty”, 0.39 [0.35, 0.45] for “caloric”, −0.18 [−0.23,−0.11] for
“healthy”, and −0.58 [−0.63,−0.52] for “likely to have been consumed at home”. These bias mea-
surements indicate that, on average, food posted on Twitter is perceived as significantly tastier,
more caloric, less healthy, and less likely to have been consumed at home, compared to consumed

5We also examined the macro-average duel outcomes, where we consider the preference of each crowd worker and then
average over workers. There appears to be no rater bias where some workers overwhelmingly prefer one or the other, as
the estimates are consistent, and no notable outlier crowd workers emerge (Fig. 4b).
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Fig. 4. Bias of food-type distribution, and within food-type preferences. (a) Comparison of food type
frequency among Twitter food (𝑥-axis) vs. MyFoodRepo food (𝑦-axis). Categories where the larger frequency
is at least two times greater than the smaller frequency are annotated. Gray diagonal line marks identity,
where two frequencies are equal. (b) Histogram of crowd workers’ preferences. On 𝑥-axis, fraction of duels
where Twitter food image is selected when compared to a MyFoodRepo food image. On 𝑦-axis, fraction of
workers with such preferences. Dashed vertical lines mark average fractions of wins, across participants. Solid
vertical line marks 0.5.

and tracked food. As estimated scores are not located on an interpretable scale, we shift our focus
to ranks instead of raw scores next.

4.2.3 Bias measurement: rank estimations. Once latent scores are estimated, images can also be
ranked, either jointly, or separately, among Twitter and MyFoodRepo food. Given its intuitive
interpretation, our main method of analysis is quantifying the shifts in distributions via ranks, as
depicted in Fig. 1. For concreteness, it is helpful to consider an example before studying images on
a more aggregate level across food types. Fig. 2 contains the top and bottom portions of the joint
rankings (one ranking for each of the four dimensions) for food type “pizza”.

Now, for each food type, we rank the two sets (MyFoodRepo food vs. Twitter food) separately and
determine to which percentile of MyFoodRepo food each percentile of Twitter food corresponds.
We focus on the median Twitter food image (also referred to as the “typical” Twitter image), and
compute the percentile rank of its score, relative to scores of MyFoodRepo food images. The rank
of the median Twitter image among MyFoodRepo food images is presented in Fig. 5a, across the 24
food types.
Bias in nutritional properties. We find that Twitter foods are perceived as more caloric, less healthy,
and less likely to have been consumed at home. On average across food types, the median-caloric
Twitter food is among the top 34% most caloric MyFoodRepo foods. The median-healthy Twitter
food is among the bottom 42% most healthy MyFoodRepo foods. And finally, the median Twitter
food is among the bottom 27% most likely home-consumed MyFoodRepo foods.

Examining food types separately, regarding how healthy the foods are estimated to be, we find
no significant differences in 15 out of the 24 types. In eight food types, tweeted food is perceived as
less healthy, and one food type (vegetables) is found to be more healthy on Twitter. With respect
to perceived caloric content, we find no significant differences in 12 out of the 24 types. For 11
types, tweeted food is perceived as more caloric. Vegetables are again an exception, found to be
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Fig. 5. Rank bias estimations and correlation between estimated qualities. (a) Relative rank (with
respect to estimated latent scores) of median tweeted food among consumed and tracked foods, where 100%
corresponds to top score. Colored bars mark estimates that significantly differ from median (i.e., 50% relative
rank). Yellow marks ranks higher, purple marks ranks lower than median, while gray marks non-significant
differences. Error bars mark 95% confidence intervals obtained via bootstrap resampling of duels. Example:
relative rank of median tweeted raclette with respect to tastiness is 90% (95% CI [79%, 96%]); i.e., median-
tasty tweeted raclette is ranked among top 10% [4%, 21%] tastiest consumed and tracked raclette images.
(b) Correlation matrix between estimated qualities among 2,400 competing images.

less caloric on Twitter compared to MyFoodRepo foods. We find that in most of the types (16 out
of the 24), tweeted foods are less likely to have been consumed at home. For eight food types, there
are no significant differences in likelihood of having been consumed at home.

Although there are food types with no biases in nutritional properties, we observe large biases
for certain foods, where a median-healthy Twitter food is among the bottom 20% of MyFoodRepo
food images with respect to healthiness. For instance, median-healthy Twitter cheese is among the
bottom 14% (95% confidence interval [6%, 24%]) on MyFoodRepo; median-healthy Twitter chocolate,
among the bottom 18% [10%, 28%] on MyFoodRepo; and median-healthy eggs, among the bottom
19% [11%, 29%] on MyFoodRepo.

Moreover, the median-caloric Twitter food is among the top 20% caloric MyFoodRepo food.
For example, median-caloric chocolate is among the top 6% [2%, 17%] on MyFoodRepo; median-
caloric cheese, among the top 8% [4%, 16%] on MyFoodRepo; median-caloric chicken, among the
top 16% [8%, 27%] on MyFoodRepo; and median-caloric cake, among the top 18% [12%, 28%] on
MyFoodRepo.
Bias in tastiness. Next, we find substantial bias in how tasty the foods are perceived to be. There are
more discrepancies in perceived tastiness compared to the above nutritional properties (Fig. 5a).
On average across food types, the median-tasty tweeted food is among top 26% tastiest consumed
and tracked foods. A median-tasty tweeted food is ranked significantly higher than the median-
tasty consumed and tracked food image in 20 out of the 24 types. In only four types there are no
significant differences regarding tastiness (mushrooms, potato, egg, croissant).
We note that, for a number of foods, a median-tasty tweeted food is ranked as high as among

the top 20% of consumed and tracked food. The median-tasty Twitter raclette is among the top 10%
[4%, 21%] on MyFoodRepo; the median-tasty soup, among top 10% [4%, 16%] on MyFoodRepo; the
median-tasty cheese, among top 12% [4%, 23%] on MyFoodRepo; the median-tasty pizza, among top
14% [4%, 26%] on MyFoodRepo; the median-tasty sauce, among top 16% [18%, 24%] on MyFoodRepo;
and the median-tasty Twitter chocolate, among top 18% [9%, 26%] on MyFoodRepo.
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Fig. 6. Complete rank comparisons across food types. For each percentile among Twitter food (on the
𝑥-axis), the corresponding percentile among MyFoodRepo food (on the 𝑦-axis). That is, a Twitter image at
percentile rank 𝑥 among Twitter images would place at percentile rank𝑦 if it were ranked against MyFoodRepo
images instead. Error bars mark 95% confidence intervals obtained via bootstrap resampling. Rank comparison
is displayed for 24 types of food, across four estimated qualities: how healthy, caloric, likely to have been
consumed at home, and tasty the food is. Food types are sorted according to the rank of the median-healthy
tweeted food among consumed and tracked foods. Black diagonal line marks identity, where percentile
distributions of Twitter food and MyFoodRepo food are equal.

4.2.4 Correlations. Next, we inspect the correlation between tastiness and the other nutritional
properties. Recall that we obtained 2,400 images (100 images for each of the 24 types), with four
estimated quality scores. Computing Pearson’s correlation between the estimated scores (Fig. 5b),
we observe a moderate positive correlation between how caloric and tasty (𝜌 = 0.33, 𝑝 < 10−60)
foods are, and a negative correlation between how caloric and how healthy (𝜌 = −0.39, 𝑝 < 10−80)
they are. Whereas the negative correlation between how caloric and how healthy foods are is
expected, the correlation between how tasty and how caloric they are might indicate that tweeted
food might be perceived as overwhelmingly tastier because it is more caloric and exaggerated.

4.2.5 Complete rank comparisons. Whereas so far we focused on the median Twitter image and
studied its relative rank among MyFoodRepo images, in Fig. 6 we present the full percentile
rank comparisons, for completeness. The black diagonal line marks identity, where the percentile
distributions of Twitter food and MyFoodRepo food are equal. In the example of cheese (bottom
right), percentiles among tweeted food correspond to higher percentiles among consumed and
tracked food regarding how caloric and tasty the cheese is (tweeted food ranks are above the
diagonal line). Percentiles among tweeted food correspond to lower percentiles among consumed
and tracked food regarding how healthy and home-consumed the cheese is (tweeted food ranks
are below the diagonal line).

4.2.6 Bias in appearance. Finally, we analyze the tags provided by crowd workers, in order to
understand further how MyFoodRepo food and Twitter food differ in their appearance.6 Recall that
crowd workers were asked to enter up to three tags per image (on average, participants entered 2.4
tags per image). Analyzing the 58,645 collected tags, we ask: How do people perceive social media
foods compared to consumed and tracked foods?
We first performed normalization of the tags provided by crowd workers. We split commas,

convert to lowercase, remove stop-words at the beginning of the text (e.g., “looks”, “seems”), and
6Note that this is an exploratory post-hoc analysis to gain deeper insights into potential mechanisms that drive the observed
biases. Our main analyses are related to perceived nutritional properties and tastiness, as estimated via pairwise comparisons.
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Table 1. Bias in appearance. Tags most distinctive of MyFoodRepo food (left) or of Twitter food (right), as
determined by pointwise KL divergence (cf. Sec. 4.2.6); *𝑝 < 0.05, **𝑝 < 0.01, ***𝑝 < 0.001, ****𝑝 < 0.0001).

Food Top tags typical for MyFoodRepo food Top tags typical for Twitter food

plain**** bland**** simple**** fancy**** fresh**** colorful****
Overall boring**** small**** thin**** delicious tasty*** raw****

dry**** healthy*** homemade**** gourmet**** flavorful**** large****

Beef grilled** bland** simple* raw*** fancy* flavorful
Biscuit or cookie shortbread** chocolate* plain* decorated*** festive** chocolate chip**
Bread white**** plain** dry** delicious** fresh** fancy*
Burger simple*** small size* fast food* interesting** attractive* filling*
Cake small**** chocolate**** chocolatey**** decorated**** fruity*** fancy**
Cheese boring*** plain*** cold*** melted**** warm**** hot****
Chicken plain**** bland**** dry**** fried*** tasty*** spicy**
Chocolate dark**** bitter*** broken*** delicious*** flavoured** fancy**
Croissant delicious* buttery* stuffed* warm* fresh healthy
Curry rice** white* homestyle* yummy* healthy* flavorful*
Egg plain*** simple*** bland** decorated** raw** colorful**
Ice cream chocolate*** nice* simple* delicious decadent fancy
Mushroom colorful simple pizza raw** creamy large
Pasta or noodles plain** bland** simple** fancy*** delicious** yellow*
Pizza small**** pepperoni** saucy* large*** fresh** delicious*
Potato boiled**** peeled**** plain* raw*** unpeeled** whole*
Raclette healthy*** greasy*** unappetizing* sliced** hot** tasty*
Rice bland*** plain** dry* flavorful** mixed* fried*
Salad simple** plain** homemade** filling* great* fresh
Sauce thin**** watery*** light**** thick**** creamy**** red****
Soup bland**** simple**** watery*** hearty*** colorful*** delicious**
Sushi boring*** simple** plain** appetizing* variety* fresh
Vegetable chopped* overcooked* mixed fresh** raw* delicate
Tomato small* healthy salad mouth-watering* juicy* flavorful

we map versions of words with a dash to a single form (e.g., mapping “mouth watering” and
“mouthwatering” to “mouth-watering”).

A tag is typical for one set of images if used frequently within the set, but at the same time
unlikely to be used in the other set. Additionally, it is not only the discrepancy between the two
probabilities that matters; a tag should also appear frequently in a set to be considered typical
of the set. This intuition is captured by the pointwise Kullback–Leibler (KL) divergence between
the distributions of tags for Twitter food images and for MyFoodRepo food images, respectively.
Specifically, the distinctiveness of a tag 𝑡 with respect to MyFoodRepo food compared to Twitter
food images is calculated as

𝐷KL (𝑝M (𝑡)∥𝑝T (𝑡)) = 𝑝M (𝑡) log
𝑝M (𝑡)
𝑝T (𝑡)

, (3)

where 𝑝M (𝑡) is the probability of observing tag 𝑡 among MyFoodRepo food images, and 𝑝T (𝑡) the
probability of observing 𝑡 among Twitter food images. On the other hand, since the KL divergence
is not symmetric, the distinctiveness of Twitter food compared to MyFoodRepo food is calculated
as

𝐷KL (𝑝T (𝑡)∥𝑝M (𝑡)) = 𝑝T (𝑡) log
𝑝T (𝑡)
𝑝M (𝑡)

. (4)

In Table 1, we present the tags with the largest pointwise KL divergence, separately for tags
distinctive of consumed and tracked food (left) and of tweeted food (right). For each tag, a 𝜒2 test on
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the two frequencies is used to measure significance, under the null hypothesis that the two groups
do not differ in frequency. We now examine—first overall, then separately by type—how foods differ
in their appearance. We see that, overall, the tags most indicative of consumed and tracked food are
“plain”, “bland”, “simple”, “boring”, “small”, “thin”, “dry”, “healthy”, and “homemade”. On the contrary,
tweeted food is more likely to be described as “fancy”, “fresh”, “colorful”, “delicious”, “tasty”, “raw”,
“gourmet”, “flavorful”, and “large”. Zooming into specific food types, the exact differences for specific
food type become apparent. For example, tweeted pizzas are more likely to be described as “large”,
“fresh”, and “delicious”, whereas consumed and tracked pizzas are seen as “small”, “pepperoni”, or
“saucy”.

Inspecting the most discriminative tags overall and separately across types of food, we identified
the following four prominent themes in tags that are discriminative of consumed and tracked vs.
tweeted food:

(1) Complexity. Consumed and tracked food is described as simple and homemade (“plain”,
“bland”, “simple” and “homemade”); tweeted food, as more elaborate (“fancy”, “gourmet”).

(2) Portion size. Consumed and tracked food comes in small portions (“small”, “thin”), whereas
tweeted food is exaggerated in portion size (“large”). Portion size differences are particularly
evident for specific types of food, e.g., consumed and tracked burgers are described as “small
size”; pizzas are “small” when consumed and tracked, and “large” when tweeted.

(3) Ways of preparing. Tweeted food is perceived as “raw” and “fresh”, while consumed and
tracked food is described as “dry”. The differences are evident when it comes to specific
foods. Consumed and tracked beef is more likely to be “grilled”, whereas tweeted beef is more
likely “raw”. Consumed and tracked vegetables are “chopped” and “overcooked”, whereas on
Twitter, they are “fresh” and “raw”. Rice and chicken are “fried” on Twitter, and “dry” when
consumed and tracked.

(4) Presentation. Tweeted food is visually appealing, whereas consumed and tracked food is more
likely to look repulsive. Tweeted food is said to be “colorful”, “delicious”, “flavorful”, and
“tasty”, whereas consumed and tracked food is usually less appealing, with “watery” soup,
“greasy” and “unappetizing” raclette, and “watery” and “thin” sauce.

5 DISCUSSION
Our goal has been to determine the validity of estimating food consumption from digital traces:
from social media posts vs. from images of consumed and tracked foods. To this end, we designed a
crowdsourcing framework for measuring biases, contrasting tweeted food images with consumed
and tracked foods images, and deployed it for the case of Switzerland.

5.1 Summary of main findings
We find that social media does not provide a faithful representation of food types of consumed and
tracked food. Measuring biases in food-type distributions, we observe that cake, soup, chocolate,
raclette, and burgers are among the most overrepresented foods on Twitter in Switzerland. Cake,
soup, and burger are visually appealing food types suitable for sharing on social media, while
chocolate and raclette are foods typical of Switzerland. Winter social and sport activities among
residents might make them more likely to be shared online. On the other hand, bread and butter—
among the most underrepresented on Twitter—are simple everyday foods that tend not to have a
lot of potential to look particularly visually appealing.

Controlling for the discrepant food-type distributions, we find that tweeted foods are perceived
as less healthy, more caloric, and less likely to have been consumed at home, compared to consumed
and tracked food of the same type (Fig. 5a). We also find substantial bias in perceived tastiness. A
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median-tasty tweeted food is, on average across food types, ranked among the top 26% of consumed
and tracked foods. Exploring free-form tags provided by crowd workers reveals that these biases
are likely mediated by differences in portion size, complexity, presentation, and different ways of
preparing food. For example, tweeted food is 3.5 times more likely to be described as “large”, and 4
times more likely to be described as “fancy”.
These results provide evidence that food shared online tends to be exaggerated compared to

tracked food. The most biased foods in terms of nutritional properties are foods that can be very
caloric and high in fat and carbohydrates: chocolate, cheese, chicken, cake, and egg. On the other
hand, we find that some of the foods are not skewed in terms of nutritional properties. For instance,
for mushrooms and croissants, no significant difference is observed in any of the four dimensions
(healthiness, tastiness, caloric content, likelihood to be consumed at home). This suggests that
some foods can still be validly studied via social media as a proxy for consumed and tracked foods.

5.2 Consumed food vs. tracked food vs. tweeted food
Our study attempts to establish a link between online and offline dietary behaviors by studying food
images as measured via two platforms: Twitter and the MyFoodRepo food-tracking app. In what
follows, we consider the relationship between three distributions: all foods consumed by the general
population (the actual phenomenon of interest), food consumption estimated via MyFoodRepo,
and food consumption estimated via Twitter.
For concreteness, consider tastiness (but the following argument equally applies to all other

dimensions studied here). Let 𝑇 denote the average tastiness score estimated via Twitter, 𝑀 the
average tastiness score estimated via MyFoodRepo, and 𝐺 the true (unobserved) average tastiness
score of food actually consumed by the general Swiss population. As before (cf. Eq. 2 and Sec. 4.2),
let the bias 𝑏 (𝑇,𝑀) = 𝑇 −𝑀 , and analogously, 𝑏 (𝑇,𝐺) = 𝑇 −𝐺 and 𝑏 (𝐺,𝑀) = 𝐺 −𝑀 . Although𝐺 ,
𝑏 (𝑇,𝐺), and 𝑏 (𝐺,𝑀) are not observed, we have:

𝑏 (𝑇,𝐺) + 𝑏 (𝐺,𝑀)= (𝑇 −𝐺) + (𝐺 −𝑀)
= 𝑇 −𝑀

= 𝑏 (𝑇,𝑀),
(5)

as illustrated in Fig. 7 for the case 𝑇 > 𝑀 (without loss of generality; if 𝑇 < 𝑀 , we may simply
make the argument about 𝑏 (𝑀,𝑇 ) instead of 𝑏 (𝑇,𝑀)).

The established substantial and significant bias 𝑏 (𝑇,𝑀) along the four studied dimensions (Sec. 4)
therefore implies a lower bound on the unobserved biases, since at least one of 𝑏 (𝑇,𝐺) and 𝑏 (𝐺,𝑀)
must be at least 𝑏 (𝑇,𝑀)/2. In other words, along all four studied dimensions, either Twitter or
MyFoodRepo differs by at least 𝑏 (𝑇,𝑀)/2 from the general population. Dividing the measured
biases 𝑏 (𝑇,𝑀) by two, we find that the lower bound on the bias still corresponds to significant gaps
in how tasty, caloric, healthy, and likely to have been consumed at home the food is. Therefore,
at least one of Twitter and MyFoodRepo foods significantly differs from the foods consumed by
the general population. For example, the measured bias 𝑏 (𝑇,𝑀) is 0.52 [0.46, 0.56] for how tasty
the food is (Sec. 4.2). The lower bound with the shifted corresponding 95% confidence intervals,
𝑏 (𝑇,𝑀)/2 = 0.26 [0.20, 0.30], still corresponds to significant gaps in how tasty the food is.

Consequently, the fact that there is a divergence between food consumption as measured via
food tracking and as measured via social media implies that at least one of the two is not a faithful
representation of the true food consumption in the general population concerning how healthy,
tasty, caloric, and likely to have been consumed at home the food is. Fig. 7 illustrates possible
scenarios in more detail. On the one hand, it might be that the true food consumption in the general
population is somewhere between the food consumption as measured with MyFoodRepo, and the
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Fig. 7. Illustration of (tastiness) biases between true food consumption 𝑮 in general population,
tracked food 𝑴 , and tweeted food 𝑻 . The bias between tweeted food and tracked food, 𝑏 (𝑇,𝑀), is char-
acterized in our study, whereas 𝑏 (𝐺,𝑀) and 𝑏 (𝑇,𝐺) are unobserved. Although 𝑏 (𝑇,𝐺) and 𝑏 (𝐺,𝑀) are
unobserved, at least one of 𝑏 (𝑇,𝐺) and 𝑏 (𝐺,𝑀) must be at least 𝑏 (𝑇,𝑀)/2. The three illustrated possible
scenarios depict situations where (1)𝑀 < 𝐺 < 𝑇 , (2) 𝐺 < 𝑀 < 𝑇 , or (3)𝑀 < 𝑇 < 𝐺 .

food consumption as measured with Twitter (i.e.,𝑀 < 𝐺 < 𝑇 , Scenario 1). On the other hand, true
food consumption in the general population might be skewed, and even more extreme than either
MyFoodRepo (i.e., 𝐺 < 𝑀 < 𝑇 , Scenario 2) or Twitter (i.e.,𝑀 < 𝑇 < 𝐺 , Scenario 3).
In principle, MyFoodRepo might be the main source of bias (i.e., 𝐺 might be closer to 𝑇 than

to 𝑀) since individuals might not track all consumed foods, and food trackers are known to be
situated and contextualized [27, 59]. Similarly, consumed foods logged with the MyFoodRepo app
are likely not representative of the full Swiss population. People who log food with the tracking
app have access to a smartphone with an Internet connection and care about their diets. However,
we argue that it is less likely that MyFoodRepo is the main source of bias since the majority of
MyFoodRepo food images are collected from volunteers enrolled in a digital cohort called Food &
You7 who are instructed and reminded to provide images of their complete daily food intake. By
design, the food present in these images was actually consumed, and omissions were discouraged.
Therefore, it appears less likely that MyFoodRepo could misrepresent the true food consumption in
the general population to such an extent that it would fully explain the measured biases 𝑏 (𝑇,𝑀).
Nonetheless, given the absence of data about the general population and the fact that all the

considered scenarios (cf. Fig. 7) are not strictly impossible, we remain agnostic about the true
source of bias. We argue that researchers should be attentive and aim to establish evidence of
validity before using either social media or tracking apps as a proxy for true food consumption in
the general population, since at least one of them differs by at least 𝑏 (𝑇,𝑀)/2 from the general
population. Future work should apply our framework for bias estimation to a representative sample
of the overall population, with all food consumption recorded. At the present time, doing so remains

7https://www.digitalepidemiologylab.org/projects/food-and-you
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challenging as the images logged with the tracking app by the volunteers are as good a peek onto
actual plates as we can currently get.

5.3 Implications
5.3.1 Implications for research studying food tracking as a proxy for offline behaviors. Based on our
considerations of the two platforms (i.e., Twitter and MyFoodRepo), we argue that it is less likely
that food tracking is the main source of bias when estimating food consumption in the general
population. Nonetheless, researchers relying on food tracking should be attentive before implicitly
assuming that the tracked consumption perfectly reflects the true consumption. Whenever possible,
further contextualization of the tracked consumption data and investigation of alternative digital
traces of the studied persons can be beneficial for examining the validity and establishing robustness.
For instance, if there is a concern that users consume food systematically different from the logged
food, future deployments should consider designing logging reminders and nudges within the
tracking applications, targeted towards and specifically encouraging logging the true behaviors.
Future research can also encourage users to assess the accuracy of logging through the tracking
applications, for instance, by self-reporting the overall perceived truthfulness.

5.3.2 Implications for social media research studying online traces as a proxy for offline behaviors.
Studies using passively collected digital traces as a proxy for real behaviors need to be valid in
order to support public health research and have implications for the design of policies and inter-
ventions that can impact health outcomes. Based on our findings, we now highlight major potential
pitfalls that can threaten the validity of such applications and provide actionable implications for
overcoming them.
Actionable implication 1: Addressing over- and underrepresentation of food types. If researchers

were to estimate what foods the general population consumes based on the number of tweets
containing these foods, the estimates could be biased. We suggest triangulating social media
behaviors with known government statistics whenever these are publicly available. For example,
although bread is underrepresented on Twitter, while burgers are overrepresented, compared with
consumed and tracked foods (Fig. 4a), researchers could—even without access to logs of actual food
consumption—identify the implausibly high prevalence of burgers on social media compared to
bread by examining publicly available statistics [68]. For comparison, in 2019, the average Swiss
consumed 89 kg of products based on grains, compared to roughly half as many kilograms of meat
(48 kg). When aggregate country-wide statistics are available for calibration, social media can still be
used as a sensor for spatially and temporally fine-grained analyses (e.g., by neighborhood or during
holidays). When no such statistics are available, researchers might be able to calibrate their methods
on populations where statistics are available and adjust the final estimates. Domain knowledge
about the populations being studied can also help in alleviating some of these disproportions. One
could consider knowledge about foods that studied populations consume in a social context, foods
frequently consumed by visitors and tourists, or only during special periods or occasions, and avoid
studies being impacted by such idiosyncrasies.
Actionable implication 2: Foods with very biased nutritional properties. If researchers were to

estimate nutritional properties of foods that the general population consumes based on the tweets
containing images of foods, the estimates could be biased. Researchers should be careful about bias
that stems from certain foods that appear particularly less healthy and more caloric compared to
consumed and tracked food, such as chocolate, cheese, chicken, cake, and egg (although these tags
might not necessarily represent exactly the same food types in populations beyond Switzerland).
Researchers should also be aware of differences in portion sizes that likely mediate the difference
in calories. We suggest detecting and examining images with an implausible amount of calories.
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For example, a single image might not be taken into account if the estimated amount of calories is
not within reasonable bounds around the recommended daily 2,000–2,500 calories for an adult.
Similarly, when training machine learning models with datasets obtained from social media

and aiming to generalize to the general population, samples should be adjusted such that the
amount of calories more closely mirrors the amount of calories and portion sizes of real food.
Otherwise, models trained on social media data to estimate the amount of calories will not make
valid estimations outside of the context of exaggerated social media foods.

Actionable implication 3: Addressing systematic discrepancies in appearance. If researchers were to
estimate appearance of foods that the general population consumes based on the tweets containing
images of foods, the estimates could be biased. Foods that people consume and track tend to appear
significantly less tasty, simpler and less elaborate, prepared in different ways, and smaller in portion
size, compared to tweeted food. These are challenging biases to overcome, as there is a need to use
human annotation or computer vision models. Note, however, that the foods that are most biased
in terms of nutritional properties and appearance are also precisely those that are overrepresented
on Twitter (Fig. 4a). Therefore, adjusting the bias in the distribution of foods is likely to alleviate
the bias in nutritional properties and appearance.

5.3.3 Implications for social media research studying online traces per se. Research studying online
communities and online content not as a proxy for real behaviors but as a phenomenon per se need
not necessarily worry about validity issues and potential pitfalls. Such typical applications include
studies characterizing online communities and specific users, such as users self-reporting eating
disorders online [19, 75] or online eating disorder support communities [20, 32]. The behaviors of
interest in these cases are precisely the online behaviors (i.e., the information that users choose to
post). Similarly, studies developing machine learning models leveraging social media data that are
not concerned with performance generalization beyond the platform and to the general populations
are not necessarily impacted by these biases. Such applications might include social media food
recognition [9, 14, 85, 106] or learning online food image embeddings [88].

5.3.4 Implications for food representation and users’ well-being. Beyond the above implications for
social media research, our results have implications for understanding the complex relationship
between technology use and the well-being of social media users. In the case of food, Twitter users
are exposed to unrealistic mirrors of reality [10], since foods that people actually consume and
track are smaller, less “fancy”, and less visually appealing (Fig. 5a, Table 1). Such distortions might
contribute to the high prevalence of social comparison [40], where, e.g., as much as one-fifth of
Facebook users can recall recently seeing a post that made them feel worse about themselves [18].
A user exposed to the social media portrayal of food might therefore believe that other people
consume food that is tastier than the food they consume themselves. However, this would likely
not be the case, due to the discrepancy between social media foods and consumed and tracked
foods. Social media might, in that case, promote an unhealthy relationship with food. Our findings
have implications for research about the mechanisms of such social comparison.

5.4 Limitations
Next, we outline key limitations to be kept in mind when interpreting our results. In our main
analyses, we study how foods are perceived by non-expert crowd workers. The extent to which
expert nutritionists would agree with such non-experts is unknown. Furthermore, while the
case study is focused on Switzerland, the crowdsourced workers are located in English-speaking
countries, which might influence the food perception due to cultural factors. Although the tags
provided by the participants (Table 1) provide insights about factors that guide their ratings, future
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work should more deeply investigate the nutritional properties of the studied foods in collaboration
with expert annotators.

We note that the number of studied food images posted on Twitter—despite being the results of
a best effort for completeness—is relatively small (around 3,700 Twitter photos of food, 2,400 of
which were annotated). This number is small mostly due to the fact that we consider geolocated
tweets only, and Switzerland is a relatively small country compared to the U.S., which has been
studied in most related work [34, 66, 103].
We performed a case study of Twitter in Switzerland. Our findings cannot be assumed to

generalize globally, and future work should apply our framework to other populations, other social
media platforms and Web traces, and other food tracking apps. That said, this study may serve
the purpose of a “proof by counterexample”: we have identified one common setting where there
is a divergence between food consumption as measured via food tracking and as measured via
social media, implying that at least one of the two is not a faithful representation of the true food
consumption in the general population. Hence, we should assume that there can be bias elsewhere,
too. Researchers studying other populations should thus be attentive and aim to establish evidence
of validity before using either social media or tracking apps as a proxy for the true food consumption
in the general population.
As a final limitation, we note that we did not include Swiss German dialect forms of keywords,

since there is no written standard for Swiss German.

5.5 Potential sources of bias of social media vs. true food consumption
We provide grounding and first insights about the validity of estimating food consumption from
digital traces by contrasting consumed and tracked food with tweeted food, controlling for location,
period, and food types. Revealing exact mechanisms that can lead to the biases of social media
traces as a proxy for true food consumption in the general population is out of the scope of this
work. However, in what follows, we consider potential sources of bias. We postulate that biases
are driven by both measurement error (related to the operationalization of consumption via the
concept of posting on Twitter) and population error (stemming from biases in subpopulations
sharing food on Twitter) [92]. Sources of measurement errors might include these:

(1) Construct validity. On the one hand, many foods that the Swiss consume are not posted
on Twitter. Appealing food consumed in certain contexts is more likely to be shared, as
positive and anticipated events are more likely to be disclosed on social media in general
[84]. Furthermore, photos published on Twitter may be self-selected for higher quality,
thus influencing how food is perceived by the annotators. On the other hand, not all foods
shared on Twitter are necessarily consumed by the posting individual (especially not in their
entirety, given the portion-size bias, Table 1). Conceivably, certain tweets may originate from
promotions, restaurants, or recipe sharing, all of which do not necessarily mirror actual
consumption. In general, food images do not necessarily need to be related to consumption
at all. They can mean something else entirely (e.g., a food can be a meme or a symbol of a
political movement), although we did not find evidence of such biases in the studied data.

(2) Platform effects. Numerous applications and platforms support improving image quality and
editing with filters, which can all contribute to the food image being more visually appealing
and appearing tastier [61].

(3) Community feedback. Feedback received from other platform members influences the type of
dietary content which a social media user posts [4], whereas negative feedback can lead to
behavioral changes [22]. Biases in how food is represented online are implied by the design
of online platforms.
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Biases are also likely in part driven by population error. Users of social media platforms do not
mirror the general population, neither demographically nor regarding other attributes such as
behaviors and interest [57]. Users of public geotagged tweets are not randomly distributed over the
general population [38, 60]. In the future, performing individual-level studies, as opposed to the
population-level study reported here, will make it possible to disentangle measurement error from
population error.

5.6 Future work
Beyond the already outlined future directions, the collected data can be used to further study
patterns of sharing food online. Future work should further understand who shares food on Twitter
(consumers, skilled individuals, but also non-individual agents, such as restaurants or caterers). We
expect that further characterizing user types would not change our main conclusions, but would
reveal how biases vary between different strata of Twitter users. Future work should further study
where they share it from (residential vs. commercial areas), when, and in what context, as well as
what are the predictors of engagement with food on Twitter.

5.7 Implications beyond food
Researching human behaviors beyond food, our crowdsourcing framework can be used to measure
many types of biases, including, but not limited to, politics and activism or behaviors important
for health and well-being, such as fitness and time spent in nature, travel, fashion and aesthetics,
socialization, or pet ownership. Resolving the questions of truthfulness and validity of digital
traces beyond food is an important direction for future research. Moving forward, it is increasingly
necessary for the our research community to invest in the collection of datasets closely mirroring
real behaviors.

5.8 Code and data
Code and data necessary to reproduce our results at are publicly available at https://github.com/epfl-
dlab/biased-bytes.

6 CONCLUSION
As we conduct more research analyzing digital trace data, methods that offer insights into the
validity of the new measures become increasingly necessary. Controlling for location, period and
food types, we find that, overall, foods shared on social media significantly diverge from consumed
and tracked foods. The fact that there is a divergence between food consumption as measured via
food tracking and as measured via social media implies that at least one of the two is not a faithful
representation of the true food consumption in the general population. Our study design lets us
identify a lower bound: at least one of Twitter and MyFoodRepo diverges from the general Swiss
population by at least half of the measured bias between the two platforms. We envision that the
findings reported here will inform researchers in their efforts to study dietary behaviors. We also
hope that the crowdsourcing framework for bias estimation and the initial quantifications will be
useful broadly for research that leverages digital traces in the context of diets and beyond.
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