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S O C I A L  S C I E N C E S

How to make causal inferences using texts
Naoki Egami1†, Christian J. Fong2†, Justin Grimmer3,4*†,  
Margaret E. Roberts5,6*†, Brandon M. Stewart7,8*†

Text as data techniques offer a great promise: the ability to inductively discover measures that are useful for testing 
social science theories with large collections of text. Nearly all text-based causal inferences depend on a latent repre-
sentation of the text, but we show that estimating this latent representation from the data creates underacknowledged 
risks: we may introduce an identification problem or overfit. To address these risks, we introduce a split-sample 
workflow for making rigorous causal inferences with discovered measures as treatments or outcomes. We then apply 
it to estimate causal effects from an experiment on immigration attitudes and a study on bureaucratic responsiveness.

INTRODUCTION
Social scientists increasingly use text-based measures as dependent or 
independent variables (1–6). Texts are complex, high-dimensional 
objects; thus, researchers must find simpler, lower-dimensional 
representations for their texts to use them in scientific analyses. 
This simplification can be intuitive and familiar. For example, we 
might take a collection of emails and divide them into “spam” and 
“not spam.” We call the function that maps the documents into 
our measure of interest g. g acts as a codebook that tells us how 
to compress our documents into categories, topics, or dimensions 
of interest.

Researchers rarely know g before they have seen their data. 
Instead, they discover it inductively from the data itself. This includes 
hand-coding and supervised methods that start with predetermined 
categories and discover a mapping from features of the texts to 
those categories (7), clustering and topic models that discover an 
organization of texts and then assign documents to those categories 
(8), and factor analysis and item-response theory models that 
embed texts into a low-dimensional space (9). The need to discover 
and iteratively define measures and concepts from data is a funda-
mental component of social science research.

However, the iterative discovery process poses problems for 
causal inference. Standard causal inference frameworks, such as 
potential outcomes (10) and directed acyclic graphs (11), assume 
that the treatment and outcome are known and do not depend on 
the data. This produces well-defined causal estimands (12), but it 
contrasts with text-based causal inferences, where researchers’ g and, 
hence, the outcomes or treatments are often latent variables found 
from the data. Thus, when causal inference methods, including ran-
domized experiments, are applied directly to text data, we suffer 
from distinct methodological challenges.

We connect the text as data literature (13–15), with the growing 
literature on causal inference in the social sciences (11, 16) using a 
rigorous machine learning workflow for text-based causal inferences 

that focuses on the central role of discovery. Our workflow high-
lights an identification and estimation problem that arises from a 
common source—using the same documents to both discover mea-
sures and estimate causal effects. By using the same documents to 
discover g and estimate effects, the analyst creates a problem where 
the categories obtained depend on the particular randomization. 
Consequently, each randomization could create a different code-
book function g. Because this different codebook function could 
contain categories with a different substantive interpretation or 
even a different number of categories, it is impossible to compare 
estimates across different randomizations. As a result, properties of 
estimators, such as bias, variance, and consistency, are not defined 
without further assumptions.

This problem is pervasive in the social sciences. Any time scholars 
work with some latent representation of data—either as treatments 
or outcomes—and then use those latent representations to make a 
causal inference, this problem is present unless scholars make addi-
tional assumptions or use a research design to eliminate its influence. 
Because of its pervasiveness, we call this problem the Fundamental 
Problem of Causal Inference with Latent Variables (FPCILV).

Even if we dismiss, or assume away, the identification problem, 
the complexity of text leads to an estimation problem when the 
same data are used to both estimate the codebook function and 
infer causal effects: overfitting. By using the same documents to dis-
cover and estimate effects, even well-intentioned analysts may mis-
take noise for a robust causal effect. The dangers of searching over g 
is a more general version of the problem of researchers recoding 
variables in an experiment to search for significance. This idea of 
overfitting also formalizes the intuition that some analysts have that 
latent-variable models are “baking in” an effect. Without using 
sample splitting, text as data causal inference research designs are 
exposed to a particularly dangerous kind of “fishing.” Not only can 
researchers search over specifications to find statistically significant 
results, without sample splitting they would also be able to alter the 
definition of their independent and dependent variables in search 
of whatever findings they wanted.

Identification and overfitting problems caused by FPCILV can 
be addressed by using one dataset to discover the measures of interest 
and another to estimate causal effects. That way, a different random-
ization of the test set would not change g. Fortunately, it is not 
necessary to actually collect two separate datasets. Instead, researchers 
can simply divide one dataset into a training set for discovering mea-
sures and a test set for estimating causal effects (17). The estimate in the 
test set provides insight into what the results from a next experiment 
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would be and, as we show below, resolves our identification and esti-
mation problems. Figure 1 summarizes the procedure we recommend, 
and Supplement S4 provides a more detailed verbal description.

Of course, sample-splitting procedures are a fundamental and 
regularly used component of machine learning research, particularly 
for evaluating the performance of classifiers. Following a long tradi-
tion in statistics (18) and more recently in econometrics, it has been 
used to improve causal inference (19–21). However, this tradition 
has not engaged with the FPICLV or the overfitting problems that 
emerge when inferring g from data and then applying it to learn 
causal effects, so the value of sample-splitting to resolve these issues 
has not yet been appreciated.

To introduce this procedure, our paper proceeds as follows. We 
provide a definition of g and describe the central role it plays in text 
analysis. We then discuss the core identification and estimation 
concerns that complicate the use of g in a causal inference setting. 
We explain why sample splitting solves this problem, how it works, 
and the trade-offs in its use. We also defer discussion of prior work 
under this section so that we can show how our work connects to a 
long tradition of sample-splitting approaches in machine learning 
and, more recently, in causal inference. Last, we illustrate our ap-
proach using applications in two settings: text as outcome and text 
as treatment.

RESULTS
The central problems that we address stem from the need to com-
press text data to facilitate causal inference. The codebook function, 
g, compresses high-dimensional text to a low-dimensional measure 
used for the treatment or outcome. In this section, we explain why g 
is essential, how to obtain g, and how to evaluate candidate g’s.

What is g and why do we need it?
Documents are high-dimensional, complicated, and sparse; hence, 
text is typically not usable for social science inference in its raw 
form. Fortunately, social scientists are often interested in some 
emergent property of the text—such as the topic that is discussed, 
the sentiment expressed, or the ideological position taken. The 
result is that distinct blocks of text can convey similar topics or sen-
timent. Reducing the dimensions of the text allows us to group texts 
and make inferences from our data.

Suppose we are interested in understanding how candidate biogra-
phies influence the popularity of a candidate (17). Each biography is 
unique; thus, we cannot estimate the effect of any individual biography 
on a candidate’s popularity. Instead, we are interested in some 
latent property of the text’s effect on the popularity of the candidate, 
such as occupational background. In this example, g might com-
press the text of the biography into an indicator of whether the can-
didate is a lawyer. The analyst might define g by hand-coding, 
automatically from the text, by looking for the presence or absence 
of the word “lawyer,” or by a group of words or phrases that convey 
that someone has a legal background, such as “JD,” “attorney,” and 
“law school.” Being a lawyer is just one latent feature in the text. 
Different g’s might measure whether a candidate held prior office, 
went to college, or served in the military. These examples all map 
the text into binary categories, but g could also map into discrete 
categories, proportions, or continuous variables (like ideal point 
estimates).

Social scientists working on text as data have adopted this com-
pression approach, although the low-dimensional representation is 
often only implicit (8, 9, 13). We can also think of g as the codebook 
function because it plays the role of a codebook in a manual content 
analysis, describing a procedure for organizing the researcher’s 
texts in some systematic way. g is always implicitly present whenever 
a set of documents is placed into a common set of categories or is 
assigned a common set of properties. g takes on a central role be-
cause it connects the raw text to the underlying property that the 
researcher cares about. Once a researcher decides on and estimates 
g, then text is usually ready to be used in statistical analysis.
Discovering g
While g is necessary to make causal inference, it is rarely known 
exactly from a theory or prior research. Instead, g is typically devel-
oped through iteration between coding rules and the documents to 
be coded. Even in manual content analysis (22), researchers typically 
read at least a portion of the documents to write a codebook that 
determines how coders should put documents into the categories of 
interest. The process is even more explicitly data-driven in auto-
mated content analysis.

There are three strategies for learning g from the data. First, we 
could read a sample of text. In manual content analysis, g often 
relies on some familiarity with the text or reading a sample of docu-
ments to decide how the text should map into categories. Second, 
we could use supervised learning, which is conceptually similar to 
manual content analysis, to infer g from hand-coded or otherwise 
labeled documents. Last, we could use unsupervised learning tech-
niques to discover a low-dimensional representation.
Portability of g
When we fit a g within a sample, it is a mapping from words and 
features to labels. This might be extremely data specific, depending 
on the particular syntax and content with a particular corpus. This 
mapping, however, is intended to capture a more general concept or 

Make train/test split

Replicate

Suggest next experiment

Validate g

Estimate effects

Test set

Collect documents
and responses

Validate g

Discover g

Finalize g

Label g

Training set

Fig. 1. Our procedure for text-based causal inferences with latent treatments 
or outcomes. 
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organization of the world. This organization, by construction, will exist 
outside of any one dataset and can be used in many distinct settings.

The concepts that we discover are portable, although the code-
book function g will be corpus specific. When we are working 
inductively, we tend to use g to generate ideas about the concep-
tualization that is useful for making inferences. Once we have this 
concept, though, it is portable across different settings. The question 
in these other settings is how to construct a g to map from the fea-
tures for that particular setting to the concept. In other words, we 
need a corpus-specific mapping, g, that corresponds with the general 
concept.

For example, consider a corpus of newspaper editorials. A re-
searcher might be interested in a codebook, g, that maps the texts of 
the editorials to the concept of right-wing populism. If the editorials 
came from the contemporary United States, the codebook would 
probably look for features that expressed skepticism about immi-
gration, affinity for protectionism, and affection for Donald Trump. 
To capture the same concept in the contemporary United Kingdom, 
researchers should instead use a codebook that focuses more on a 
distaste for the European Union. When the concept is captured 
with different codebooks, researchers must be cautious about 
making naïve comparisons of g across corpora. For example, a 0.9 in 
the United States means something different from a 0.9 in the United 
Kingdom. Therefore, when considering portability and external 
validity, researchers should focus on causal effects in terms of the 
underlying concept rather than a specific function g itself. If a re-
searcher found that exposure to a populist editorial increases 
support for defense spending in the United States, they could test 
whether the relationship held in the United Kingdom as well. Here, 
researchers can conduct sign generalization (whether the sign of 
causal effects of exposure to right-wing populism is the same in the 
two countries) rather than effect generalization (whether point esti-
mates are the same), which is a less relevant question because re-
quired codebook functions g are different.

The problem of causal inference with g
The codebook function, g, encodes the mapping between the ob-
served text and the low-dimensional representations we use to 
make inferences. In this section, we explain how this compression 
of information both facilitates and challenges causal inference with 
text. We first place g in the traditional causal inference setting. We 
then explain how the use of g leads to the FPCILV and overfitting.
Causal inference with g
To begin, we review potential outcomes notation and assumptions 
used when there is no text or dimensionality reduction, and we 
analyze a unidimensional treatment and outcome (16). Denote our 
dependent variable for each unit i [i ∈ (1,2, …, N)] with Yi; the treat-
ment condition for unit i will be Ti. We define the space of all 
possible outcomes as 𝒴 and the space of all possible treatment 
assignments as T. When the treatment is binary, we refer to Yi(1) as 
the potential outcome for unit i under treatment and Yi(0) as the 
potential outcome under control. The individual causal effect (ICE) 
for unit i is given by ICEi = Yi(1) − Yi(0). Our typical estimand is 
some function of the ICEs, such as the average treatment effect 
(ATE), E[Yi(1) − Yi(0)].

To identify the ATE using a randomized experiment, we make 
three key assumptions. First, we assume that the response depends 
only on the assigned treatment, often called the stable unit treat-
ment value assumption (SUTVA). Specifically,

Assumption 1 [SUTVA (23)]. For each individual i, we assume 
that their response depends only on their assigned treatment status.

Second, we assume that our treatment is randomly assigned:
Assumption 2 (Ignorability). Yi(t) ⫫ Ti for all t ∈ T. For each 

individual, we assume that their potential outcomes are independent 
of treatment assignment.

Third, we assume that every treatment has a chance of being seen:
Assumption 3 (Positivity). Pr(T = t) > 0 for all t ∈ T. We assume 

that all treatments have some probability of being seen.
The second and third assumptions are guaranteed by proper 

randomization of the experiment, whereas the first is generally 
understood to mean that there is no interference between units and 
no hidden values of treatment. For each observation, we observe 
only a single potential outcome corresponding to the realized 
treatment.

Building off this notation, we can introduce mathematical notation 
to cover high-dimensional text and the low-dimensional representa-
tion of texts derived from g, which we will use for our inferences. 
We start by extending our notation to cover multidimensional out-
comes, Yi, and multidimensional treatments, Ti. We will suppose, 
for now, that we have already determined g, the codebook function. 
Recall that g is applicable regardless of whether the coding is done 
by a machine learning algorithm, a team of research assistants, or an 
expert with decades of experience.

We write the set of possible values for the mapped text as 𝒵 with 
a subscript to indicate whether it is the dependent variable or treat-
ment. We denote the realized values of the low-dimensional repre-
sentation for unit i as zi [i ∈ (1, …, N)]. We suppose that when the 
outcome is text g :𝒴 → 𝒵Y and zi ≡ g(Yi), and when the treatment is 
text g :T → 𝒵T and zi ≡ g(Ti). The set 𝒵 is a lower-dimensional 
representation of the text and can take on a variety of forms de-
pending on the study of interest. For example, if we are hand-coding 
our documents into two mutually exclusive and exhaustive catego-
ries, then 𝒵 ≡ {0,1}. If we are using a mixed-membership topic 
model to measure the prevalence of K topics as our dependent variable, 
then 𝒵 is a K − 1 dimensional simplex. In addition, if we are using 
texts as a treatment, we might suppose that 𝒵 is the set of K binary 
feature vectors, representing the presence or absence of an underly-
ing treatment (although our workflow is general, we prefer binary 
treatments primarily for simplicity of functional form; see Supple-
ment S7 for more). There are numerous other types of g that we 
might use—including latent scales, dictionary-based counts of terms, 
or crowd-sourced measures of content. While we generally assume 
that g substantially reduces dimensionality, the only requirement 
for g is that it is a function.

We next use g to write our causal quantity of interest in terms of 
the low-dimensional representation. To make this concrete, consider 
a case where we have a binary nontext treatment and a text-based 
outcome (we consider other causal estimands below). Suppose we 
hand-code each document into one of K categories such that for unit 
i, we can write the coded text under treatment as zi(1) ≡ g(Yi(1)). 
We can then define the ATE for category k to be

	​​ ​ATE​ k​​​  =​  E [ g ​(​Y​ i​​(1 ) )​ k​​ − g ​(​Y​ i​​(0 ) )​ k​​]​   ​​  =​   E [ ​z​ i,k​​(1) − ​z​ i,k​​(0 ) ]​​	 (1)

where zi,k(1) and zi,k(0) indicate the values of the kth category, for 
unit i, under treatment and control, respectively.
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The problems: Identification and overfitting
Equation 1 supposes that we already have a g in hand. Whether by 
reading or machine learning, g is often discovered by interacting 
with some of the data. We denote the set of documents considered 
in development of g as J and write gJ to indicate the dependence of 
g on the documents. Problems of identification and estimation arise 
where the set of documents used to develop g, J, overlaps with the 
set of documents used in estimation, which we will call I. There are 
two broad concerns: an identification problem arising from FPCILV 
and an estimation problem with overfitting.

If Assumption 1 (SUTVA) holds, then each observation’s re-
sponse does not depend on other units’ treatment status. However, 
even when Assumption 1 holds, when we discover gJ, the particular 
randomization that we obtain will affect the gJ that we estimate. 
This dependence on a randomization occurs because the treatment 
vector TJ—the treatment assignments for all documents J—affects 
the g that we obtain. If we were to randomize again, we would obtain 
a different TJ and therefore a different gJ—a distinctively challenging 
form of data-adaptive estimation as in Hubbard et  al. (24). This 
makes it impossible to compare the estimates across different ran-
domizations because the content or even the number of categories 
might be different. Because the estimates cannot be compared, it is 
impossible to even define the bias, variance, consistency, or other 
properties of an estimator. Supplement S2 provides a formal defini-
tion of the FPCILV.

To see how the FPCILV works in practice, consider a stylized 
experiment on four units with a dichotomous intervention (treatment/
control) and a text-based outcome. We might imagine potential 
outcomes that have a simple relationship between treatment and 
the text-based outcome such as the one shown in Table 1.

Using Table  1, we can imagine the properties of an estimator 
applied to this text-based experiment as we rerandomize treatment 
assignment. Suppose that for each randomization we choose a g that 
measures each category we observe using an indicator variable and 
then, given g, estimate the treatment effect. For example, consider if 
we observe the treatment vector (1,1,0,0), we only observe two of 
the four categories: morals and immigration. Accordingly, our 
learned g consists of two indicator variables, one for morals and one 
for immigration. We could randomize again and get assignments 
(1,0,1,0), where we would observe all four categories resulting in 
four indicator variables. Under the randomization (0,0,1,1) (i.e., the 
sixth scenario in Table 1B), we are back to only two categories, taxes 
and polarization, and, thus, only two indicator variables.

As we randomize, we estimate different g’s with different categories. 
This lack of category stability complicates our ability to analyze our 
estimators as we traditionally do, using a workflow based on re-
randomization. We take this category and classification stability for 
granted in standard experiments because categories are defined and 
fixed before the experiment. However, when we estimate categories 
from data, the discovered g depends on the randomization and thus 
induces dependence of a unit’s coded outcome on the treatment 
assignments of other units. Even if we fix the categories, as we might 
do with a supervised model, different randomizations may lead to 
different rules for assigning documents to categories, leading to a 
lack of classification stability. If, however, we fix g before estimating 
the effects, the problem is resolved, and the properties of the estima-
tor are now well defined.

Even if we assume away the FPCILV, estimating g means that 
researchers might overfit: discover effects that are present in a par-
ticular sample but not in the population. The overfitting problem is 

Table 1. A stylized experiment with text-based outcomes. (A) shows the potential outcomes for each unit under each treatment assignment. Treated units 
talk about candidate morals and polarization and control units talk about taxes and immigration. In (B), T denotes a different treatment assignment vector 
where two of four units are treated. Y denotes text-based observed outcomes under each treatment assignment. Mo, Im, Tx, and Po stand for candidate morals, 
immigration, taxes, and polarization, respectively. 

(A) Text-based potential outcomes

Potential outcome under treatment Potential outcome under control

Person 1 Candidate morals Taxes

Person 2 Candidate morals Taxes

Person 3 Polarization Immigration

Person 4 Polarization Immigration

(B) Text-based observed outcomes under six different treatment assignments

T Y T Y T Y T Y T Y T Y

Person 1 1 Mo 1 Mo 1 Mo 0 Tx 0 Tx 0 Tx

Person 2 1 Mo 0 Tx 0 Tx 1 Mo 1 Mo 0 Tx

Person 3 0 Im 1 Po 0 Im 1 Po 0 Im 1 Po

Person 4 0 Im 0 Im 1 Po 0 Im 1 Po 1 Po

Number of 
categories 2 4 4 4 4 2
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particularly acute when a researcher is fishing—searching over g’s 
to obtain statistical significance or estimates that satisfy a related 
criterion. However, overfitting can occur even if researchers are 
conducting data analysis without ill intentions. Researchers necessarily 
search over different g’s to find those that best meet the criteria of 
interpretability, interest, fidelity, and tractability. Hand-coding re-
quires iteration to refine the codebook, supervised models to refine 
the classifier, and unsupervised methods to adjust parameters and 
examine different organizations.

Fishing and overfitting are a problem in all experimental de-
signs, not just those with text. The problem of respecifying g until 
finding a statistically significant result is analogous to the problem of 
researchers recoding variables or ignoring conditions in an experi-
ment, which can lead to false-positive results (25). The problem 
with text-based inferences is heightened because texts are much 
more flexible than other types of variables, creating a much wider 
range of potential g’s. This wider range increases the risk of overfitting, 
even among well-intentioned analysts. Overfitting is also likely in 
texts because it is so easy to justify a particular g after the fact—the 
human brain is well equipped to identify and justify a pattern in a 
low-dimensional representation of text, even if that pattern emerges 
merely out of randomness. This means that validation steps alone 
may be an insufficient safeguard against overfitting, although texts 
provide a rich set of material to validate the content.

A train/test split procedure for valid causal 
inference with text
To address the identification issues caused by the FPCILV and the 
estimation challenges of overfitting, we must break the dependence 
between the discovery of g and the estimation of the causal effect. 
The most straightforward approach is to define g before looking at 
the documents. Defining the categories beforehand, however, limits 
our coding scheme, excluding information about the language used 
in the experiment’s interventions or what units said in response to a 
treatment. If we define our codebook before seeing text, we will miss 
important concepts and have a poorer measure of key theoreti-
cal concepts.

We could also assume the problem away. Specifically, to elimi-
nate the FPCILV, it is sufficient to assume that the codebook that 
we obtain is invariant to randomization. Take, for example, the text 
as outcome case; if the g we learned does not change over different 
randomizations of the treatment, we do not have an FPCILV. We 
define a formal version of this assumption in Supplement S2.

Our preferred procedure is to explicitly separate the creation of 
g and the estimation of treatment effects. This procedure avoids the 
FPCILV and provides a natural check against overfitting. To explicitly 
separate the creation of the codebook and its application to estimate 
effects, we randomly divide our data into a training set and a test set. 
Specifically, we randomly create a set of units in a training set 
denoted by the indices J and a nonoverlapping test set denoted by 
the indices I. We use only the training set to estimate the gJ function 
and then discard it. We then use the test set exclusively to estimate 
the causal effect on the documents in I.

This division between the training and test set addresses both the 
identification and estimation problems. It avoids the FPCILV in the 
test set because the function g does not depend on the randomization 
in the test set, so that each test set unit’s response depends only on 
its assigned treatment status. There is still a dependence on the 
training set observations and their treatment assignment. This, 

however, is analogous to the analyst shaping the object of inquiry or 
creating a codebook after a pretest. With the FPCILV addressed, it 
is now possible to define key properties of the estimator, like bias or 
consistency.

The sample split also addresses the concerns about overfitting. 
The analyst can explore in the training set as much as she likes, but, 
because findings are verified in a test set that is only accessed once, 
she is incentivized to find a robust underlying pattern. Patterns in 
the training set that are due to idiosyncratic noise are highly unlikely 
to also arise in the test set, which helps assure the analyst that 
patterns that are confirmed by the separate test set will be replicable 
in further experiments. By locking g into place in the training set, 
the properties of the tests in the test set do not depend on the num-
ber of different g’s considered in the training set. In practice, we find 
that splitting the sample ensures that we are able to consider several 
models to find the g that best captures the data and aligns with our 
theoretical quantity of interest without worrying about accidentally 
p-hacking.

With the reason for sample splitting established, we first describe 
our final estimands for the text as outcome and text as treatment 
cases. We then describe the pragmatic steps we suggest to imple-
ment a train/test split. Then, we discuss the trade-offs in using a 
split-sample approach. Having described our strategy, we connect 
our approach to existing prior work before demonstrating how it 
works in two different applications.
Text as outcome
In text as outcome, the particular g that the analyst chooses defines 
the categories of the outcome from which the estimand will be defined. 
Our goal is to obtain a consistent (and preferably unbiased) estima-
tor for the ATE (or other causal quantities of interest) assuming a 
particular g. Using Assumptions 1 to 3, the following is a consist
ent estimator

	​​   ATE​ = ​ ∑ 
i∈I

​​​ ​ I(​T​ i​​  =  1 ) ​g​ J​​(​Y​ i​​)  ─  ​∑ i∈I​ ​​ I(​T​ i​​  =  1)
  ​ − ​ ∑ 

i∈I
​​​ ​ I(​T​ i​​  =  0 ) ​g​ J​​(​Y​ i​​)  ─  ​∑ i∈I​ ​​ I(​T​ i​​  =  0)

  ​​	

Supplement S2 gives an identification proof. The proof relies on 
the fact that g is fixed before documents I are examined, which 
allows us to treat the mapped outcome gJ(YI) as an observed variable.
Text as treatment
Text may also be the treatment in an experiment (26, 27). For exam-
ple, we may ask individuals to read a candidate’s biography and 
then evaluate how the candidate’s favorability on a scale of 0 to 100 
(17). The treatment, Ti, is the text description of the candidate 
assigned to the respondents. The potential outcomes Yi(Ti) describes 
respondent i’s rating of the candidate under the treatment assigned 
to respondent i.

While we could compare two completely separate candidate de-
scriptions as in A/B tests, social scientists are almost always interested 
in how some underlying feature of a document affects responses. 
That is, the researcher is interested in estimating how an aspect or 
latent value of the text influences the outcome, as in Voelkel et al. 
(27). For example, the researcher might be interested in whether 
including military service in the description has an impact on the 
respondents’ ratings of the candidate. Military service is a latent 
variable—there are many ways that the text could describe military 
service that all would count as the inclusion of military service and 
many ways that the text could omit military service that all would 
count as the absence of the latent variable. The researcher might 

D
ow

nloaded from
 https://w

w
w

.science.org on February 06, 2023



Egami et al., Sci. Adv. 8, eabg2652 (2022)     19 October 2022

S C I E N C E  A D V A N C E S  |  R E S E A R C H  A R T I C L E

6 of 13

assign 100 different candidate descriptions, some of which mention 
the candidate’s military service and some of which do not. In 
this case, the treatment of interest is Zi ≡ g(Ti) ∈ {0,1}, which maps 
the treatment text to an indicator variable that indicates whether 
the text contains a description of the candidate’s military service. 
To estimate the impact of a binary treatment, we could use the 
estimator

	​​ ​̂  ATE​​  =​  ​ ∑ 
i∈I

​​​ ​  I(​Z​ i​​  =  1 ) ​Y​ i​​  ─  ​∑ 
i∈I​ ​​ I(​Z​ i​​  =  1)

 ​ − ​ ∑ 
i∈I

​​​ ​  I(​Z​ i​​  =  0 ) ​Y​ i​​  ─  ​∑ 
i∈I​ ​​ I(​Z​ i​​  =  0)

 ​​​	

where Zi ≡ gJ(Ti).
With text as treatment, we may be interested in more than just 

one latent treatment. The presence of multiple latent treatments re-
quires different causal estimands and enables us to ask different 
questions about how features of the text affect responses. For exam-
ple, we can learn the marginal effect of military service and how 
military service interacts with other features of the candidate’s 
background—such as occupation or family life. Typically with mul-
tidimensional treatments, we are interested in the effect of one 
treatment holding all others constant. This complicates the use of 
topic models that suppose 𝒵 is a simplex (all topic proportions are 
nonnegative and sum to one) because there is no straightforward 
way to change one topic holding others constant [see (17) and Sup-
plement S7]. Instead, we will work with g that compresses the text T 
to a vector of K binary measured treatments Z ∈ 𝒵, where 𝒵 rep-
resents all 2K possible combinations of the measured treatments, 
and Z has typical element Zik, indicating the kth treatment for ob-
servation i. We could also, of course, suppose that g maps T to a set 
of continuous underlying treatments, but this requires additional 
functional form assumptions. Fong and Grimmer (28) also suppose 
that there are a series of unmeasured treatments Bi ∈ ℬ, which we 
obtain by applying the function h to the texts so that h(Ti) ≡ Bi. 
Fong and Grimmer (28) then suppose that the combination of mea-
sured and unmeasured treatments captures all the relevant features 
of the text or that Yi(Ti) = Yi(g(Ti), h(Ti)) = Yi(zi, Bi).

If Z ∈ {0,1}, then we can define the ATE as

​​ATE​  =​  ​ ∑ 
b∈ℬ

​​​ E [ ​Y​ i​​(​Z​ i​​ =  1, ​B​ i​​ =  b ) − ​Y​ i​​(​Z​ i​​ =  0, ​B​ i​​ =  b ) ] Pr(​B​ i​​ =  b)​​

If Z is higher-dimensional, we can generalize this estimand to be 
the average marginal component effect.

To estimate the effect of measured latent treatments, we require 
an additional assumption than in the text as outcome case. This is 
because we are usually only able to randomize at the text level, but 
we are interested in identifying the effect of latent treatments we 
are unable to manipulate directly, raising the possibility that our 
measured treatment of interest Zi could be confounded by Bi. 
Consequently, we need to make an additional assumption beyond 
the three mentioned above [SUTVA, Ignorability and Positivity, 
which, in the multidimensional case, generalizes to f(Zi) > 0 for all 
​​Z​ i​​  ∈  Range g(·)​]. Specifically, Fong and Grimmer (28) show that 
one of the following two assumptions is sufficient to identify the 
ATE and to ensure that the difference in means estimator is a con-
sistent estimator.

Assumption 4. (28) Either
1) The measured and unmeasured latent treatments are indepen-

dent Pr(Zi, Bi) = Pr(Zi)Pr(Bi) or

2) The unmeasured treatments have no effect on the outcome: 
E[Yi(Zi = z, Bi = b)] = E[Yi(Zi = z, Bi = b′)] for all z ∈ {0,1} and all 
b, b′ ∈ ℬ

Fong and Grimmer (28) show that Assumptions 4.1 and 4.2 are 
analogous to assumptions made when doing standard observation-
al causal inference work. Assumption 4.1 implies that any omitted 
unmeasured treatments are not systematically related to the mea-
sured treatments of interest and therefore cannot confound our esti-
mate. Assumption 4.2 implies that any unmeasured treatment cannot 
affect the outcome, and as a result, it cannot confound our estimate. 
Since the assumptions depend on the distribution of latent com-
ponents of the text in the population, they are not guaranteed by ran-
domization at the level of the complete texts. Fong and Grimmer 
(28) provide a set of tools for diagnosing whether the assump-
tions hold for potentially confounding unmeasured treatments.
Procedure
In this section, we discuss the general procedure for implementing 
the train/test split to estimate the above quantities of interest. This 
procedure follows the schematic in Fig. 1. Considerations specific to 
text-as-treatment or text-as-outcome are deferred to Supplements 
S6 and S7.

Step 1: Splitting the sample. The first major choice that the analyst 
faces is how to split the sample into two pieces: the training set and 
the test set. A default recommendation is to split 50% of the docu-
ments in training and 50% in the test set. However, this depends on 
how the researcher evaluates the trade-off between discovery of g 
and testing. Additional documents in the training set enables learn-
ing a more complicated g or more precise coding rules. Additional 
documents in the test set enable more precise estimation of the 
treatment effect. While the test set should be representative of the 
population that you want to make inference about, the training set 
can draw on additional nonrepresentative documents as long as 
they are similar enough to the test set to aid in learning a useful g. 
Last, when taking the sample, the analyst can stratify on characteristics 
of interest to ensure that the split has appropriate balance between 
the training and test set on those characteristics.

Once the test set is decided, the single most important rule is that 
the test set is used once, solely for estimation. If the analyst revises g 
after looking at the test set data, she reintroduces the FPCILV and 
risks overfitting. Test data must be set aside before any part of the 
analysis: Even preliminary steps like preprocessing must not include 
the test dataset. Third parties, such as survey firms and research 
agencies, can be helpful in credibly setting the data aside.

Step 2: Discover g. We use the training set and text as data methods 
to find a g that is interpretable, is of theoretical interest, has high 
label fidelity, and is tractable. Here, we use the Structural Topic 
Model (STM) and the Supervised Indian Buffet Process (sIBP), but 
there are numerous other methods that are applicable.

Step 3: Validation in the training set. Validation is an important 
part of the text analysis process, and researchers should apply the 
normal process of validation to establish label fidelity. These valida-
tions are often application specific and draw on close reading of the 
texts. These validations should be completed in the training set as 
part of the process of discovering and labeling g before the test set is 
opened. See Grimmer and Stewart (29) for more details on types of 
validation and the STM package (30) for tools designed to assist 
with validation.

During this step, we can refit g as often as it is useful for our 
analysis. However, once applied to the test set, we cannot alter g 
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further. Before fixing g, ensure that g is capturing the aspect of the 
texts that you want to capture, assign labels, and then validate to 
ensure that the conceptual gap between those labels and the repre-
sentation g produces is as small as possible. While validation ap-
proaches may vary—this necessarily involves reading documents 
(15, 22, 29)—it is helpful to fix a set of human-assigned labels, ex-
ample documents, and automated keyword labels in advance to 
avoid subtle influence from the test set.

In addition, while we focus on inference challenges with g, stan-
dard experimental challenges remain. We advise analysts to fix their 
evaluation plans before looking at data in the test set. Here, we can 
draw from the established literature on best practices in experi-
ments potentially including a pre-analysis plan (31). This can in-
clude multiple-testing and false-discovery rate corrections.

Step 4: Applying g and estimating causal effects. Mechanically, 
applying g in the test set is straightforward and is essentially the pro-
cess of making a prediction for an unseen document. After calculating 
the quantities gJ(YI), we can use standard estimators appropriate to 
our estimand, such as the difference of means, to estimate the ATE. The 
supplement describes how to apply g to test documents in both the 
sIBP and the STM, which we cover in our examples.

Step 5: Validation in the test set. It is also necessary to ensure that 
the model fits nearly as well on the test set as it did on the training 
set. When both the training and test sets are random draws from the 
same population, this will generally be true, but overfitting is still 
possible, particularly with small sample sizes. The techniques used 
to validate the original model can be used in the test set as well as 
common measures of model fit such as log likelihood. Unlike the 
validation in the training set, during the validation in the test set, 
the analyst cannot return to make changes to the model. Nevertheless, 
validation in the test set helps the analyst understand the substan-
tive meaning of what is being estimated and provides guidance for 
future experiments. Formally, our estimand is defined in terms of 
the empirically discovered g in the training set. However, invari-
ably, the analyst makes a broader argument indicated by the label. 
Validation in the test set verifies that label fidelity holds and that g 
represents the concept in the test set of documents.
Trade-offs
The train/test split addresses many of our concerns, but it is not 
without cost. Efficiency loss is the biggest concern. In a 50/50 train-
test split, half the data are used in each phase of analysis, implying 
that half the data are excluded from each step. At the outset, it is 
difficult to assess how much data are necessary for either the train-
ing or the test set. The challenge in setting the size of the test set is 
that the analyst does not yet know what the outcome (or treatment) 
will be when the decision is made on the size of the split. The prob-
lem in setting the size of the training set is that we do not know the 
power we need for discovery. Alternatively, we could focus first on 
determining the power needed for estimation of an effect and then 
allocate the remaining data for discovery. This can be effective, but 
it requires that we are able to anticipate characteristics of a treat-
ment or outcome we have not yet discovered.

Another concern is conceptual: We may worry that the particu-
lar g, and perhaps even the ultimate conceptualization, might de-
pend on how the sample was originally split. While this is an 
important issue, we note that it is a common feature across research: 
Our ideas and views of the world will be informed by the order of 
evidence that we encounter. Two different teams—or even the same 
team on different days—might look at the same data and find different 

things of salience to measure. This does not invalidate any one read-
ing of the text, but it does require that analysts and readers keep in 
mind that this is only one possible interpretation of the events in the 
world. This is true even in classical nontext randomized experi-
ments. Consider a job training experiment where we could choose 
to measure any of a wide variety of outcomes from employment, 
wages, social connections, or even mental well-being. That one of 
these outcomes shows no effect would not be to suggest that the job 
training had no effect on the people involved, just that it did not 
have an effect on that specific outcome. Furthermore, although two 
teams might pick two different ways of measuring employment, 
their findings are likely to coincide because they are looking at the 
same underlying fact pattern.

It is essential to ask how well g fits on test data, whether it 
measures the concept it intends to well, and to explore whether 
there are critical concepts emerging or missing from the analysis. It 
is by validating g that we ensure that results we find will be con-
sistent with other measurements of the same concept. Just like 
other approaches to research, as g’s are applied to different datasets 
and interpreted by different researchers, our hope is that the 
particular data we are using will matter less than the broader truth 
the analysis reveals.
Prior work
Our central contribution is a rigorous machine learning workflow 
that characterizes how to make causal inferences with texts and 
identifies problems that arise when making those causal inferences 
and the explanation of why sample splitting addresses these 
challenges. Together, this serves as a unified guidebook for using 
text and causal inference. Before Roberts et al. (32) and Fong and 
Grimmer (17), there had been comparatively little work on causal 
inference with latent variables. Lanza et al. (33) consider causal in-
ference for latent class models but do not give a formal statement of 
identifying assumptions or acknowledge the set of concerns we identify 
as the FPCILV. Volfovsky et al. (34) present a variety of estimands 
and estimation strategies for causal effects where the dependent 
variable is ordinal. They provide approaches based on both the 
observed data and latent continuous outcomes. Volfovsky et al. (34) 
express caution about the latent variable formulation due to identi-
fication concerns, and the subsequent literature (e.g., 35) has moved 
away from it. Unfortunately, many of their strategies based directly 
on the observed outcomes are unavailable in the much higher-
dimensional setting of text analysis. Following our posting of the 
preprint version of this article in 2018, there has been a burst of 
interest from the natural language processing community exploring 
various components of causal inference with text classifiers and 
language models (36–38).

Our proposed solution, sample splitting, has a long history in 
machine learning. There has been a growing exploration of the use 
of train/test splits in the social sciences as well as causal inference 
(19, 21, 39). It is the natural solution to this class of problems, and 
we certainly do not claim to be the first to introduce the idea of 
train/test splits into the area. Our approach is mostly closely related 
to prior work by Fafchamps and Labonne (20) and Anderson and 
Magruder (39), which both advocate a form of split samples to aid 
in discovery with standard regression analysis.

Our work is also part of a burgeoning literature on the use 
of machine learning algorithms to enhance causal inference 
(18, 19, 21, 40–43). Much of this work focuses on estimating causal 
parameters on observed data and addressing a common set of concerns, 
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such as estimation and inference in high-dimensional settings, regu-
larization bias, and overfitting. Our work complements this literature by 
exploring the use of latent treatments and outcomes. Many pieces 
in this area call for sample splits or cross-validation for estimation 
and inference, providing additional justification for our preferred 
approach [e.g., (21)]. In Supplement S3, we discuss the connection 
between our work and related work using cross-validation.

Applications
Our preferred approach is sequential. We advocate a split-sample 
design that allows for a discovery phase to precede the analysis 
phase. We also explicitly plan to run experiments again, using each 
analysis to inform future work. In this section, we demonstrate this 
approach through two applications: one where text is the outcome 
and one where text is the treatment. In each case, we explicitly 
describe the discovery process. Although we use specific models to 
facilitate discovery, STM for text as outcome and sIBP for text as 
treatment, the process we describe here is general to any method for 
discovering g from data.
Text as outcome: An experiment on immigration
To first demonstrate how to use text as a response in a causal inference 
workflow, we apply the STM to open-ended responses from a survey 
experiment on immigration (32). Specifically, we build on an experi-
ment first introduced in Cohen et al. (44) to assess how knowledge 
about an individual’s criminal history affects respondent’s preference 
for punishment and deportation. These experimental results contribute 
to a large literature about Americans’ preferences about immigrants 
and immigration policy [see (45) for a review] and a literature on 
the punishments people view as appropriate for crimes. Critically, 
in both conditions of our experiment, an individual has broken the 
same law, entering the country illegally, but differs solely on prior 
criminal history. We therefore ask how someone’s past criminal be-
havior affects the public’s preference for future punishment and use the 
open-ended responses to gather a stated reason for that preference.

We analyze three iterations of a similar experiment. With each 
experiment, we chose g and estimated treatment effects using the 
process described in Fig. 1. The first results are based on responses 
initially using the data from Cohen et al. (44). We use this initial set 
of responses to estimate an initial g and to provide baseline catego-
ries for the considerations respondents raise when explaining why 
someone deserves punishment. In a second experiment, we build 
on (44), but address issues in the wording of questions, expand the 
set of respondents who are asked to provide an open-ended response, 
and update the results with contemporary data. We then run a third 
experiment because we found that our g performed poorly in the 
test set of the second experiment. We also used that opportunity to 
improve small features of the design of the experiment. We describe 
each experiment in detail below.

We report the results of experiments 1 and 3 (rather than just 3) 
in the supplement and provide the data for all three experiments in 
our replication archive to be transparent about our research process, 
something we suggest that researchers do to avoid selective reporting 
based on an experiment’s results. The experimental results show that 
there has been unexpected stability in the considerations Americans 
raise when explaining their punishment preferences, although there 
are some additional categories that emerge. There is also a consistent 
inclination to punish individuals who have previously committed a 
crime, although they committed the same crime as someone with-
out a criminal history.

In each experiment, we used equal proportions of the sample in 
the train and test sets. In each experiment, we fit several models in 
the training set before choosing a single model that we then applied 
to the test set.

For experiment 3, Table  2 shows the words with the highest 
probability in each of the 11 topics. Topics range from advocating 
for rehabilitation or assistance for remaining in the country to 
suggesting that the person should receive maximal punishment. 
Because of space constraints, we put additional details about the 
other experiments in Supplement S8.

After discovering, labeling, and finalizing g in the training set, 
we estimated the effect of treatment on the topics in the test set. In 
Fig. 2, we show large impacts of treatment on topics. Treatment 
(indicating that the person had a previous criminal history) increased 
the amount of writing about maximal punishment, deportation, 
and sending the person back to their country of origin. The control 
group was more likely to advocate that the person should be able to 
stay in the country or that the punishment should depend on the 

Table 2. Topics and highest probability words for experiment 3.  

Label Highest probability 
words

Topic 1 Limited punishment with help 
to stay in country, complaints 
about immigration system

legal, way, immigr, 
danger, peopl, allow, 
come, countri, can, enter

Topic 2 Deport deport, think, prison, 
crime, alreadi, imprison, 
illeg, sinc, serv, time

Topic 3 Deport because of money just, send, back, countri, 
jail, come, prison, let, 
harm, money

Topic 4 Depends on the circumstances first, countri, time, came, 
jail, man, think, reason, 
govern, put

Topic 5 More information needed state, unit, prison, crime, 
immigr, illeg, take, 
crimin, simpli, put

Topic 6 Crime, small amount of jail time, 
then deportation

enter, countri, illeg, 
person, jail, deport, 
time, proper, imprison, 
determin

Topic 7 Punish to full extent of the law crime, violent, person, 
law, convict, commit, 
deport, illeg, punish, 
offend

Topic 8 Allow to stay, no prison, 
rehabilitate, probably 
another explanation

dont, crimin, think, tri, 
hes, offens, better, 
case, know, make

Topic 9 No prison, deportation deport, prison, will, 
person, countri, man, 
illeg, serv, time, sentenc

Topic 10 Should be sent back sent, back, countri, prison, 
home, think, pay, 
origin, illeg, time

Topic 11 Repeat offender, danger to 
society

believ, countri, violat, 
offend, person, law, 
deport, prison, citizen, 
individu
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circumstances of the crime. We found qualitatively similar re-
sults in our other experiments (Supplement S8), although g is differ-
ent in both cases and the set of people who were asked to provide a 
reason is different. In each case, the description of a criminal histo-
ry substantially increases the likelihood that the respondent advo-
cates for more severe punishment or deportation.

In Fig. 1, we recommend concluding experiments with sugges-
tions for further experimentation, and we do so here. Future iterations 
of the experiment could explore two features of the treatment. First, 
we have only provided information about one type of crime. It would 
be revealing to know how individuals respond to crimes of differing 
severity. Second, we could use our existing design to estimate hetero-
geneous treatment effects, which would be particularly interesting 
in light of contemporary debates about how to handle undocumented 
immigration in the United States.

Text as treatment: CFPB
We turn next to apply our workflow to text-based treatments. We 
examine the features of a complaint that cause the Consumer 
Financial Protection Bureau (CFPB) to reach a timely resolution of 
the issue.

Our goal is to discover the treatments and estimate their effect 
on the probability of a response. We discover g using the sIBP 
developed for this setting in Fong and Grimmer (17) and imple-
mented in the texteffect package in R (46). The model learns a set of 
latent binary features that are predictive of both the text and the 
outcome. To do this, we first randomly divide the data, placing 10% 
in the training set and 90% of the data in the test set. We place more 
data in the test set because our large sample (≈11K) provides ample 
opportunity to discover the latent treatments in the training set and 
to provide greater power when estimating effects in the test set. In 

−0.15 −0.10 −0.05 0.00 0.05 0.10 0.15

Treatment − Control

Limited punishment
with help to stay in

country, complaints about
immigration system

Deport

Deport because of money

Depends on the
circumstances

More information needed,
if violent imprison

Crime, small amount
of jail time, then

deportation

Punish to full extent of
the law

Allow to stay, no prison,
rehabilitate, probably
another explanation

No prison, deportation

Should be sent back

Repeat offender, danger
to society

Fig. 2. Test set results for immigration experiment 3. Point estimates and 95% confidence intervals.
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the training set, we apply the sIBP to the text of the complaints and 
whether there was a timely response. We use an extensive search to 
determine the number of features to include and the particular model 
run to use. Materials and Methods provides more details on the sIBP.

Once we have fit the model in the training set, we use it to infer 
the treatments in the test set. Table 3 provides the inferred latent 
treatments from the CFPB complaint data. The Automatic Keywords 
are the words with the largest values in the estimated latent factors 
for each treatment, and the manual keyword is a phrase that we 
assign to each category after assessing the categories. Using these 
features, we can then infer their presence or absence in the treated 
documents and then estimate their effect. To do this, we use the 
regression procedure from Fong and Grimmer (17) and then use a 
bootstrap to capture uncertainty from estimation.

Figure 3 shows the effects of each latent feature on the probability 
of a timely response. The black dots are point estimates, and the 
lines are 95% confidence intervals. Figure 3 reveals that when con-
sumers focus on the specific banking activities of home mortgages 
(treatment 1), credit scores (treatment 3), and personal banking 
(treatment 5), the probability of a prompt response increases. In 

contrast, the CFPB is much less successful at obtaining prompt 
responses given the narration of the event (treatment 2) or detailed 
documentation (treatment 4). Presumably, the former sorts of com-
plaints trigger programmatic considerations that can be resolved by 
reference to the relevant policy, while the latter must be dealt with 
by banks on a case-by-case basis and therefore require more time.

If we were to run a further iteration of the CFBP analysis, we would 
proceed on two fronts. First, there is a constant stream of data 
arriving at the CFPB. We could use our existing g to reestimate the 
treatment effects to see whether there are temporal trends. We could 
also estimate a different g to assess whether categories emerge over time. 
Second, we could design experiments to address concerns about de-
mographic differences. For example, we could partner with individuals 
who are planning to write complaints to see how their language, 
independent of their personal characteristics, affects the response.

DISCUSSION
Text is inherently high-dimensional. This complexity makes it 
difficult to work with text as an intervention or an outcome without 
some simplifying low-dimensional representation. There are a whole 
host of methods in the text as data toolkit for learning undiscovered, 
insightful representations of text data. Unfortunately, while these low-
dimensional representations make text comprehensible at scale, they 
also make causal inference with text difficult to do well, even within 
an experimental context. When we discover the mapping between the 
data and the quantities of interest, the process of discovery under-
mines the researcher’s ability to make credible causal inference.

Here, we have introduced a rigorous machine learning workflow 
for causal inference with text, identified problems that emerge when 
using text data for causal inference, and then described a procedure 
to resolve those problems. In this conceptual framework, we have 
clarified the central role of g, the codebook function, in making the 
link between the high-dimensional text and our low-dimensional 
representation of the treatment or outcome. In doing so, we clarify 

Table 3. CFPB latent treatments  

No. Automatic keywords Manual keyword

1 mortgage, loan, payments, 
modification, foreclosure, property

Mortgage

2 call, called, told, asked, hung, number Narrative

3 credit_report, disputed, credit_
reporting, fcra, reporting, report

Credit score

4 xxxx, xxxx_xxxx, letter, request, 
documents, time

Detailed

5 account, payment, xxxx, balance, 
credit, card

Credit card

Fig. 3. The effect of complaint features on a prompt response. 
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two threats to causal inference: the FPCILV—an identification 
issue—and overfitting—an estimation issue. We demonstrate that 
both the identification and estimation concerns can be addressed 
with a simple split of the dataset into a training set used for discovery 
of g and a test set used for estimation of the causal effect. More 
broadly, we advocate for research designs that allow for sequential 
experiments that explicitly set aside research degrees of freedom for 
discovery of interesting measures, while rigorously testing relation-
ships within experiments once these measures are defined explicitly.

Our workflow unifies the text as data literature with the tradi-
tional approaches to causal inference. We have considered the text 
as treatment and text as outcome, and in the future, we hope to 
address the setting where text is both treatment and outcome. In 
related work, Roberts et al. (47) introduce techniques for matching 
on text to adjust for confounders, and recent papers (48, 49) consid-
er other text-based confounding approaches. There is much more 
work to be done to explore other causal designs, causal effects in 
conversations (50), optimally setting training/test splits, and in-
creasing the efficiency of discovery methods so that they can work 
on even smaller datasets.

While our argument has principally been about the analysis of 
text data, our work has implications for any latent representation of 
a treatment or outcome used when making a causal inference. This 
could include latent measures common in social science, such as 
measures of democracy (e.g. polity), voting behavior (e.g. ideal 
points), and forms of manual content analysis. Any time a process 
of discovery is necessary, we should be concerned if the discovery is 
completed on the same units where the effect is estimated. In certain 
circumstances, this process will be unavoidable. Polity scores were 
developed by looking at the full population of world democracies; 
thus, there is no test set we can access, but we argue that the train/
test split should be considered in the context of the development of 
future measures that require a low-dimensional representation of 
high-dimensional data.

What do our findings mean for existing applied work (text and 
otherwise)? The FPCILV and overfitting raise considerable risks to 
replicability, but it does not mean that any work not using a train/test 
split is invalid. However, as estimands based on latent constructs 
become more common in the social sciences, we hope to see an 
increased use of the train/test split and the development of creative 
methodologies to enhance the process of discovery.

MATERIALS AND METHODS
Text as outcome: An experiment on immigration
Experiment 1
As a starting point, we conduct an analysis of the experimental 
results reported in (44). The survey experiment was administered in 
the context of a larger study of public perceptions of the criminal 
justice system. The survey was conducted in 2000 by telephone 
random-digit dial and includes 1300 respondents. More details 
about the survey are available in Cohen et al. (51).

In the experiment, respondents were given two scenarios of a 
criminal offense. In both the treatment and control conditions, the 
same crime was committed: illegal entry to the United States. In the 
treatment condition, respondents were told that the person had 
previously committed a violent crime and had been deported. In the 
control condition, respondents were told that the person had never 
been imprisoned before.

The treatment condition prompt was as follows:

“A 28-year-old single man, a citizen of another country, was 
convicted of illegally entering the United States. Prior to this 
offense, he had served two previous prison sentences each 
more than a year. One of these previous sentences was for a 
violent crime and he had been deported back to his home 
country.”

In the control condition, respondents were told the following:

“A 28-year-old single man, a citizen of another country, 
was convicted of illegally entering the United States. Prior to 
this offense, he had never been imprisoned before.”

Respondents were then asked a closed-ended question about 
whether the person should go to jail. If they responded that the person 
should not go to jail, they were asked to respond to an open-ended 
question, “Why?” The key inferential goal of the initial study was to 
determine whether a respondent believed a person should be de-
ported, jailed, or given some other punishment.
Experiment 2
After analyzing the results of experiment 1, we ran a second experi-
ment using the same treatment and control conditions but with 
slight design differences to build upon and improve the original 
experimental protocol. First, all respondents were asked the open-
ended question, not just those who advocated for not sending the 
individual to jail. Second, we redesigned the survey to avoid order 
effects. Third, we asked a more specific open-ended question. We 
still asked “Should this offender be sent to prison?” (responses: yes, 
no, and do not know) but followed by asking “Why or why not? 
Please describe in at least two sentences what actions if any the 
U.S. government should take with respect to this person and why?” 
Per our Institutional Review Board, we added the statement “(Please 
do not include any identifying information such as your name or other 
information about you in this open-ended response.)” Experiment 2 
was run on Mechanical Turk (MTurk) between 30 June 2017 and 
16 July 2017 with 1299 respondents.
Experiment 3
We expected experiment 2 to be our last experiment, but we en-
countered a design problem. After we estimated g in the training set 
using STM and fit it to the test data, we realized that some of our 
topic labels were inaccurate. In particular, we had attempted to label 
topics using three predetermined categories: prison, deport, and 
allow to stay. However, the data in the test set suggested some addi-
tional categories. We could not simply relabel the topics in the test 
set because this would nullify the value of the train/test split. In-
stead, we decided to run an additional experiment. We also took 
the opportunity to make a few design changes. We had previous-
ly included an attention check, which appeared after the treatment 
question. We moved the attention check to before the treatment. 
We also had not previously used the MTurk qualification enforcing 
the location to be in the United States, although we did in experiment 
3. Last, we blocked workers who had taken the survey in experiment 
2 using the MTurkR package (52). We include the data from 
experiment 2 in our replication package but, because of poor topic 
labels, only present results from experiments 1 and 3 in the paper.

Experiment 3 was run on MTurk on 10 September 2017 with 
1094 respondents. To avoid labeling mistakes, two members of our 
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team labeled the topics independently using the training data and 
then compared labels with one another to create a final set of con-
gruent labels before applying the g to the test set.

Text as treatment: The CFPB
The CFPB is a product of Dodd-Frank legislation and is (in part) 
charged with offering protections to consumers. The CFPB solicits 
complaints from consumers across a variety of financial products 
and then addresses those complaints. It also has the power to secure 
payments for consumers from companies, impose fines on firms 
found to have acted illegally, or both.

The CFPB is particularly compelling for our analysis because it 
provides a massive database on the text of the complaint from the 
consumer and how the company responded. If the person filing the 
complaint consents, the CFPB posts the text of the complaint in 
their database, along with a variety of other data about the nature of 
the complaint. For example, one person filed a complaint stating that

“the service representative was harsh and not listening to 
my questions. Attempting to collect on a debt I thought was 
in a grace period ... They were aggressive and unwilling to 
hear it.”

and asked for remedy. The CFPB also records whether a business 
offers a timely response once the CFPB raises the complaint to the 
business. In total, we use a collection of 113,424 total complaints 
downloaded from the CFPB’s public website. Since we circulated 
the first draft of this paper in 2018, we have been pleased to see other 
researchers adopt this application as a test case for their own ap-
proaches to causal inference with texts.

The texts are not randomly assigned to the CFPB, but we view 
the use of CFPB data as still useful for demonstrating our workflow. 
Much of the information available to bureaucrats at the CFPB will 
be available in the complaint because of the way complaints are re-
corded in the CFPB data. To be clear, for the effect of the text to be 
identified, we would need to assume that the texts provide all the 
information for the outcome and that any remaining information is 
orthogonal to the latent features of the text. We view the example 
of the CFPB as useful because it provides us a clear way to think 
through how this assumption could be violated. If there are other 
nontextual factors that correlate with the text content, then our 
estimated treatment effects will be biased. For example, if working 
with the CFPB directly to resolve the complaint were important and 
individuals who submitted certain kinds of complaints were less 
well equipped to assist the CFPB, then we would be concerned 
about whether selection on observables holds, or there could be 
demographic factors that confound the analysis. For example, 
minorities may receive a slower response from CFPB bureaucrats 
or a more adversarial response from financial institutions (53), and 
minorities may be more likely to write about particular topics. While 
this is certainly plausible, many of the effects that we estimate of the 
text are large, so they would be difficult to explain solely through 
this confounding. Furthermore, Fong and Grimmer (28) demon-
strate how to adjust for both text- and nontext-based confounders, 
such as the content of complaints or who submitted the complaint.

We use the sIBP to discover treatments in our corpus. The 
sIBP is a nonparametric Bayesian method; on the basis of a user-set 
hyperparameter, it estimates the number of features to include in 
the model, although the number estimated from a nonparametric 

method rarely corresponds to the optimal number for a particular 
application. To select a final model, we then evaluate the candidate 
model fits using a model fit statistic introduced in Fong and 
Grimmer (17). The train/test split ensures that we can refit the 
model several times, estimating the features that provide the best 
substantive insights.

SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at https://science.org/doi/10.1126/
sciadv.abg2652
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