
Practice of Epidemiology

Using Big Data to Emulate a Target Trial When a Randomized Trial Is Not Available

Miguel A. Hernán* and James M. Robins

* Correspondence to Dr. Miguel A. Hernán, Department of Epidemiology, 677 Huntington Avenue, Boston, MA 02115

(e-mail: miguel_hernan@post.harvard.edu).

Initially submitted December 9, 2014; accepted for publication September 8, 2015.

Ideally, questions about comparative effectiveness or safety would be answered using an appropriately designed

and conducted randomized experiment. When we cannot conduct a randomized experiment, we analyze observa-

tional data. Causal inference from large observational databases (big data) can be viewed as an attempt to emulate

a randomized experiment—the target experiment or target trial—that would answer the question of interest. When

the goal is to guide decisions among several strategies, causal analyses of observational data need to be evaluated

with respect to how well they emulate a particular target trial. We outline a framework for comparative effectiveness

research using big data that makes the target trial explicit. This framework channels counterfactual theory for com-

paring the effects of sustained treatment strategies, organizes analytic approaches, provides a structured process

for the criticism of observational studies, and helps avoid common methodologic pitfalls.

big data; causal inference; comparative effectiveness research; target trial

Large observational databases are often used to answer
questions about comparative effectiveness or safety. These
databases, which are frequently labeled as “big data” (1), typ-
ically include many variables measured in many people.
Observational analyses of big databases, however, are not

the preferred choice for comparative effectiveness research.
Weresort toobservational analysesofexistingdatabecause the
randomized trial that would answer our causal question—the
target trial—is not feasible, ethical, and timely. One can often
fruitfully regard causal inference from big data as an attempt
to emulate a target trial (2). If the emulation is successful, the
analysis of the observational data yields the same effect
estimates (except for random variability) as the target trial
would have yielded had the latter been conducted.
Though the concept of a target trial is implicit in many big

data analyses, the target trial itself is rarely characterized. In
this paper, we outline a framework for comparative effective-
ness research using big data that revolves around the explicit
description and emulation of the target trial. This framework
channels the existing counterfactual theory for comparing the
effects of point treatments (3) and sustained treatment strate-
gies (4–6), organizes analytic approaches dispersed throughout
the literature, provides a structured process for the criticism of
observational studies, and helps avoid common methodo-
logic pitfalls.

Suppose we want to estimate the effect of estrogen plus
progestin hormone therapy on the 5-year risk of breast cancer
among postmenopausal women. Table 1 lists 7 key compo-
nents of the target trial protocol: the eligibility criteria, treat-
ment strategies being compared (including their start and end
times), assignment procedures, follow-up period, outcome of
interest, causal contrast(s) of interest, and analysis plan. Several
of these components are part of the widespread population,
intervention, control, and outcome approach to the formulation
of clinical questions (7). In the next sections, we outline some
of the main obstacles for the emulation of the trial protocol
using observational data and some strategies to partlyovercome
those obstacles.

EMULATING THE TARGET TRIAL USING

OBSERVATIONAL DATA

Suppose we use a large database of health care claims to
emulate the target trial of hormone therapy and breast cancer
in this population, as described in Table 1. Because the data
were not collected for research purposes, data codes may be
inconsistent or ambiguous. For example, the code “breast
cancer” might have been recorded in the database when a
woman was diagnosed with breast cancer or simply when her
physician suspected breast cancer and ordered a diagnostic
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test. Hence, researchers unfamiliar with the data must both
consult with knowledgeable data users and conduct data val-
idation studies.

Let us assume that our particular database has passed many
high-quality validation studies (e.g., confirmation that 95%
of “breast cancer” codes correspond to true diagnoses in med-
ical records) so that the emulation of the target trial can pro-
ceed. In this section, we outline the main components of the
emulation except for one: the choice of the time zero of
follow-up (or baseline), which is deferred to the next section.

Eligibility criteria

Our observational analysis should apply the same eligibil-
ity criteria used in the target trial (see Table 1). Therefore, we
impose the restriction that, at baseline, women must have
been included in the database for long enough to apply the
exclusion criteria (at least 2 years) and early enough to con-
tribute 5 or more years of active follow-up. Note that the
eligibility criteria cannot include restrictions based on post-
baseline events (e.g., “include only individuals who ever
used therapy during the follow-up”), which may introduce
bias in the analysis of both randomized trials and obser-
vational data (8) and which cannot applied at the time of ran-
domization in a true randomized trial.

Emulating the desired eligibility criteria can still be problem-
atic, as the following examples illustrate. First, suppose that we
are interested in a target trial in which all potential participants
are required to have a baseline mammography and then those
with breast calcifications are excluded. Emulating this target
trial may be impossible if our observational database only in-
cludes information onwhether amammographywas performed
(for billing purposes) but not the findings.We thenmust decide
whether emulating a different target trial that includes women
with calcifications also addresses a question of interest.

Second, suppose we want to emulate a randomized trial in
which individuals will be followed via their contacts with the
health care system. This target trial would only include indi-
viduals who can be expected to remain actively engaged with

their health care providers during the follow-up period. Al-
though expected engagement can be explicitly defined and
assessed during the recruitment process of a true trial (e.g.,
by asking the question, “Do you plan to move or change jobs
within the next 2 years?”), this eligibility criterion is often
elusive in observational analyses. A common strategy to em-
ulate this criterion is to restrict the analysis to individuals who
have been in regular contact with the health care system be-
fore baseline (e.g., those who attended regular check-ups or
filled any prescriptions within the 2 previous years) in the
hope that they will remain in contact thereafter. Note that
we cannot simply exclude individuals whose claims are no
longer found in the database some time after baseline (per-
haps because they changed insurers). Rather, we must regard
such individuals as lost to follow up (i.e., censored).

Treatment strategies

The target trial emulated using observational data will typ-
ically be a pragmatic trial, that is, one in which treatment
strategies are compared under the usual conditions in which
they will be applied (9, 10). For instance, we cannot emulate a
placebo-controlled trial with tight monitoring and enforce-
ment of adherence to the study protocol.

To emulate our target trial, we identify individuals in the
database who meet all of the eligibility criteria. We then as-
sign them to the trial strategy or strategies that are consistent
with their baseline data. In our example, eligible women who
did not start hormone therapy will be coded as having initi-
ated the first strategy, and eligible women who did start estro-
gen plus progestin therapy will be coded as having initiated
the second strategy. Note that otherwise eligible individuals
who did not start any of the strategies of interest are consid-
ered ineligible for the target trial emulation and excluded
from the observational analysis (in the presence of effect modi-
fication, this exclusion means we are choosing not to estimate
the effect in the entire population of eligible women; a some-
what analogous situation arises in truly randomized trials
restricted to women whowish to participate). In our example,

Table 1. ASummaryof theProtocol of a Target Trial toEstimate theEffect of PostmenopausalHormoneTherapyon the 5-Year Riskof Breast Cancer

Protocol Component Description

Eligibility criteria Postmenopausal women within 5 years of menopause between the years 2005 and 2010 and with no history of
cancer and no use of hormone therapy in the past 2 years.

Treatment strategies Refrain from taking hormone therapy during the follow-up. Initiate estrogen plus progestin hormone therapy at
baseline and remain on it during the follow-up unless you are diagnosed with deep vein thrombosis,
pulmonary embolism, myocardial infarction, or cancer.

Assignment procedures Participants will be randomly assigned to either strategy at baseline and will be aware of the strategy to which
they have been assigned.

Follow-up period Starts at randomization and ends at diagnosis of breast cancer, death, loss to follow-up, or 5 years after baseline,
whichever occurs first.

Outcome Breast cancer diagnosed by an oncologist within 5 years of baseline.

Causal contrasts of interest Intention-to-treat effect, per-protocol effect

Analysis plan Intention-to-treat effect estimated via comparison of 5-year cancer risks among individuals assigned to each
treatment strategy. Per-protocol effect estimation requires adjustments for pre- and postbaseline prognostic
factors associated with adherence to the strategies of interest. All analyses will be adjusted for pre- and
postbaseline prognostic factors associated with loss to follow-up (57). This analysis plan implies that the
investigators prespecify and collect data on the adjustment factors.
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women who started estrogen only therapy will not participate
in the emulation even if they meet all of the eligibility criteria.
Comparisons of initiators of the various treatment strate-

gies under investigation (sometimes referred to as new-user
designs) are 1 simple way to avoid biases due to the selection
of individuals who meet eligibility criteria that are defined
after the initiation of a treatment strategy and therefore are
possibly affected by the strategy itself (11). For example,
the comparison of current (prevalent) users, who had initiated
therapy months or years before baseline, with never users
may have contributed to the failure to identify the early effect
of estrogen plus progestin therapy on the risk of coronary
heart disease in observational studies (12, 13). Because the
therapy caused a short-term increase in risk, the group of
prevalent users might have been relatively depleted of sus-
ceptible women. The ultimate problem is that a comparison
of current users with never users does not correspond to
any contrast between treatment strategies that could, even
in principle, be compared in a randomized trial.

Assignment procedures

We can only emulate target trials without blind assignment,
which is the standard design of pragmatic trials, because individ-
uals in thedata set and their health careworkers are usuallyaware
of the treatments that participants receive. This is not necessarily
a limitation if the goal is comparing the effects of realistic treat-
ment strategies in individuals who are aware of their care.
To emulate the random assignment of strategies at base-

line, we need to adjust for all confounding factors required to
ensure comparability (exchangeability) of the groups defined
by initiation of the treatment strategies (14). The adjustment
for baseline confounders may be performed via matching
(perhaps on the propensity score), stratification or regression,
standardization or inverse probability weighting, g-estimation,
or doubly robust methods. For a basic description of these
methods, see Hernán and Robins (14).
If the observational database does not contain sufficient in-

formation on baseline confounders or if we fail to identify
them, successful emulation of the target trial’s random as-
signment is not possible. Confounding bias may be espe-
cially serious when emulating target trials that, like ours,
compare an active treatment with no treatment (or usual care)
rather than with another active treatment (15, 16).
Although it is generally impossible to determinewhether the

emulation failed because of uncontrolled confounding, indirect
approaches may alert about possible unmeasured confounding.
One such approach is emulating a target trial with “reversed”
strategies, for example, a trial in which hormone therapy users
are assigned to the strategies of “continue using therapy” or
“stop using therapy” (13). Incompatible or surprising effect es-
timates (e.g., a decreased risk both when initiating therapy in
our original target trial and when discontinuing therapy in the
reversed target trial) suggest that at least 1 of the 2 emulations
failed to ensure a fair comparison. As an aside, in both target
trials individuals with a common treatment history at baseline
(nonusers in the original trial and users in the reversed trial) are
compared, which is the basic idea of g-estimation (17).
A second approach is to consider outcome controls (18) for

which no causal effect is expected, for example, brain cancer

or pneumonia in our hormone therapy example. If the con-
founders for the study and control outcomes are sufficiently
similar, then the use of outcome controls can help detect con-
founding. One can also consider control outcomes for which
the magnitude of the effect is nonzero but approximately
known. Analogously, one could use treatment controls by con-
sidering treatment strategies with indications similar to the
ones under study but for which no effect is expected.
Other approaches to ameliorating unmeasured confound-

ing rely on extracting information from sources previously
considered impractical for large-scale research. For example,
novel technologies for natural language processing and ad-
vanced image processing might eliminate the need for manual,
labor-intensive review of medical records. Machine-learning
tools and other computer science techniques might also help
investigators search for combinations of variables that improve
confounding adjustment compared with traditional methods
(19–21).

Outcome

Wewould use the database to identify women with a diag-
nosis of breast cancer during the follow-up. Independent out-
come validation is often warranted, because several studies
have shown that lack of outcome validation may result in mis-
leading effect estimates (22–25). We often would prefer to
emulate a target trial with systematic and blind ascertainment
of the outcome to ensure that knowledge of treatment status
does not influence a doctor’s decision to look for the outcome.
In our example, such differential ascertainment may result in
an increased incidence of breast cancer diagnosis among hor-
mone users even in the absence of a biological effect.
Nonetheless, because doctors will generally be aware of

the treatment received by the individual, we cannot use obser-
vational data to emulate a target trial with systematic and
blind outcome ascertainment except when outcome ascer-
tainment cannot be affected by treatment history (e.g., if the
outcome is death and is independently ascertained from a
death registry). Note, however, that if we were interested in
comparing the effects of different hormone treatment strate-
gies on the rate of breast surgery and thus on the need for
breast surgeons, no difficulty would arise because the target
trial to be emulated would have unblinded ascertainment.

Causal contrast(s) of interest

Several causal effects can be of interest in true randomized
trials (26). Two common ones are the intention-to-treat effect
(i.e., the comparative effect of being assigned to the treatment
strategies at baseline, regardless of whether the individuals con-
tinue following the strategies after baseline) and the per-protocol
effect (i.e., the comparative effect of following the treatment
strategies specified in the study protocol). Often, both effects
are of interest (27). If the intention-to-treat and per-protocol ef-
fects are of interest in the target trial, we would try to estimate
analogs of both effects from our observational data.

Analysis plan

To estimate the intention-to-treat effect in an actual ran-
domized trial, wewould conduct an intention-to-treat analysis
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to compare the outcomes of the groups assigned to each treat-
ment strategy. An intention-to-treat analysis, however, is
rarely possible in observational analyses of existing data. In
our example, the closest observational analog of the intention-
to-treat analysis is a comparison of initiators of the different
treatment strategies, assuming adequate adjustment for base-
line confounders. A comparison of initiators parallels the inten-
tion-to-treat analysis in target trials in which assignment and
initiation of the treatment strategies always occur together at
baseline, regardless of whether individuals continue on the strat-
egies after baseline. In our example, if we had data on prescrip-
tion (rather than dispensing) of therapy, a comparison of groups
according towhether they did or did not receive a prescription of
therapy at baseline would be somewhat more analogous to the
intention-to-treat analysis in the target trial.

To estimate the per-protocol effect in both true randomized
trials and emulated trials like ours, adjustment for baseline and
postbaseline confounding is necessary when the treatment
strategies under study are sustained over time. Because postba-
seline prognostic factors associated with subsequent adherence
to the strategies may be affected by prior adherence, Robins’s
g-methods are generally required, even in the absence of
unmeasured confounding and model misspecification. See
Robins and Hernán (6) for a review of these methods.

Furthermore, in the presence of selection bias due to loss
to follow-up, adjustment for postbaseline factors might also be
needed to validly estimate both intention-to-treat effects and per-
protocol effects in both actual trials and observational analyses
that emulate a target trial.When the postbaseline adjustment fac-
torsareaffectedbythetreatmentstrategiesthemselves,g-methods
are generally needed.

DEFINING TIME ZERO

Successful emulation of a target trial requires a proper def-
inition of time zero of follow-up in the observational data,
also referred to as baseline. Eligibility criteria need to be
met at that point but not later; study outcomes begin to be
counted after that point but not earlier.

In our target trial, the natural start of follow-up is the time
when the treatment strategy is assigned, which often occurs
either shortly before or at the same time as initiation of the
treatment strategy. Starting after randomization could result
in selection bias because all outcome cases between random-
ization and time zero would be excluded from the analysis.

With observational data, the best way to emulate time zero
of the target trial is to define time zero to be the time when an
eligible individual initiates a treatment strategy. However, im-
plementation of this criterion is not straightforward because the
eligibility criteria can be met at many different times for the
same individual. Consider the following scenarios.

Eligibility criteria are met at a single time

In the first scenario, follow-up starts at the time the eligi-
bility criteria are met, which may vary across individuals.
Some examples include:

• a study to compare high versus low epoetin doses among
patients who have undergone 3 months of hemodialysis
(follow-up starts after 3 months of hemodialysis) (28);

• a study to compare immediate initiation of antiretroviral
therapy when the CD4 cell count first drops below 500
cells/μL versus delayed initiation in patients infected with
human immunodeficiency virus (follow-up starts the first
time an individual’s CD4 cell count drops below 500
cells/μL) (29); and

• a study to compare various lifestyle interventions to reduce
the 20-year risk of diabetes between June 1982 and June
2002 (follow-up starts in June 1982) (30).

Eligibility criteria are met at multiple times

In a second scenario, eligibility criteria are met at multiple
times. An example is below:

• Consider a study to compare initiation versus no initiation
of estrogen plus progestin therapy among postmenopausal
women with no history of chronic disease and no use of
hormone therapy during the previous 2 years. A woman
who meets these eligibility criteria continuously between
the ages of 51 and 65 years would be eligible for the target
trial at multiple times during her lifetime—that is, she has
multiple times that can qualify as time zero. When should
her follow-up start in the observational study (at age 51, 52,
53 . . .)?

Two unbiased choices of time zero with multiple eligible
times are: 1) a single eligible time (e.g., the first eligible
time or a random eligible time) and 2) all eligible times or
a large subset thereof. The second strategy requires emulating
multiple nested trials, each of them with a different start of
follow-up (31–33). The number of nested trials depends on
the frequency with which data on treatment and covariates
are collected.

• If there is a fixed schedule for data collection at prespecified
times (e.g., every 2 years, like in the Nurses’Health Study),
then we can emulate a new trial starting at each prespecified
time (13).

• If there is subject-specific, possibly unscheduled, data
collection (e.g., electronic medical records), then we can
choose a short fixed time unit (e.g., a month) and emulate
a new trial starting at each time unit (34).

From a statistical standpoint, the second strategy can be more
efficient than the first. However, because individuals may be
included in multiple emulated trials, appropriate adjustment
of the usual variance estimator is required.

SPECIFYING A GRACE PERIOD

A pragmatic trial often is designed to allow for the con-
straints faced by decision makers in practice. For example,
once a patient and her clinician decide that the patient should
initiate hormone therapy, it may take several weeks to com-
plete the clinical tests (e.g., a bone density scan and a lipid
panel) and administrative procedures required before treatment
initiation. Therefore, the trial protocol might specify that a
women assigned to the strategy “initiate hormone therapy” is
allowed a 1-month grace period so that she is considered com-
pliant with the protocol if she initiates therapy within a month
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from randomization. If we designed a trial with a strategy re-
quiring instant initiation of hormone therapy at randomization
without a grace period, the trial would then include strategies
that could not be successfully implemented in clinical practice.
In emulating a target trial that includes grace periods using

observational data, we must allow for an analogous grace pe-
riod measured from time zero. The use of a target trial with a
grace period not only ensures that the strategies remain realistic
but also increases the number of people in the observational
database whose data can be used to emulate the target trial.
A consequence of having a grace period is that, for the du-

ration of the grace period, an individual’s observational data
is consistent with more than 1 strategy. In our example, the
introduction of a 3-month grace period implies that the strat-
egies are redefined as “initiate therapy within 3 months of
eligibility” versus “never initiate therapy.” Therefore, an in-
dividual who starts therapy in month 3 after baseline has data
consistent with both strategies during months 1 and 2. Had
she died during those 2months, towhich strategy of the target
trial would we have assigned her? Whenever an individual’s
data at baseline are consistent with initiation of 2 or more
treatment strategies, 1 possibility is to randomly assign her to
1 of them.
Another possibility is to create 2 exact copies of this

individual—clones—in the data and assign each of the 2 clones
to a different strategy (35–38). Clones are then censored at the
timewhen their data stop being consistent with the strategy to
which they were assigned. For example, if the individual
starts therapy in month 3, the clone assigned to “never initiate
therapy” would be censored at that time. The potential bias
introduced by this likely informative censoring needs to be
corrected by appropriate adjustment for time-varying factors
(e.g., via inverse probability weighting (39)). Importantly,
if the individual had died in month 2, then both clones
would have died and therefore the death would have been as-
signed to both strategies. This double allocation of events
prevents the bias that could arise if events that occurred dur-
ing the grace period were systematically assigned to 1 of the
2 strategies only.
A consequence of cloning and censoring is that an intention-

to-treat effect cannot be emulated because each individual may
have been assigned to many or even all strategies at baseline.
Therefore, a contrast based on baseline assignment (i.e., an
intention-to-treat analysis) will compare groups with essen-
tially identical outcomes. Analyses with a grace period at base-
line are geared towards estimating a per-protocol effect of a
target trial.

DISCUSSION

The target trial approach is consistent with a formal coun-
terfactual theory of causality (4) yet avoids the theory’s often
unfamiliar mathematical notation and concepts. Further, the
approach provides an organizing principle for causal infer-
ence methods that implicitly rely on counterfactual reasoning
(e.g., new-users design, negative outcome controls), estab-
lishes a link between methods for the analysis and the report-
ing of observational studies and randomized trials (2, 40),
naturally leads to analytic approaches that prevent apparent
paradoxes and common biases (41), facilitates a systematic

methodologic evaluation of observational studies (42, 43)
and the transportability of their estimates (44–46), and may
help explain between-studies differences (47) as different ob-
servational analyses may be emulating different target trials.
As an illustration of the target trial approach, we chose a

relatively simple emulation of static treatment strategies re-
lated to hormone therapy. The advantages of the approach,
however, become clearer when emulating target trials that
compare dynamic strategies that are sustained over time
and that adjust treatment to the evolving characteristics of pa-
tients (28, 29, 48). Also, for brevity, we focused on follow-up
studies, but the target trial approach can be extended to case-
control sampling designs (49–51). Investigators will first
need to define the follow-up study from which cases and con-
trols were sampled and then the target trial that the follow-
up study emulates. Finally, we did not consider target trials
with interference (52–54) or crossover, and we ignored ef-
fects that may result from the scaling up of the treatment strat-
egies outside of the studied populations.
Effect estimates from observational data are well defined

when one is able to map the observational analysis into a par-
ticular target trial. However, we will rarely be able to emulate
the ideal trial in which we are most interested. As discussed
above, a number of compromises will have to be made re-
garding eligibility criteria, strategies to be compared, etc.
The specification of the protocol of the target trial will typi-
cally be an iterative process during which wewill learn which
particular target trials may be reasonably supported by the
observational data (55). Of all those possible target trials,
we will choose the one that is closest to the ideal trial that we
would have liked to conduct to answer our question. We will
then be able to outline a protocol, present a flow chart, sum-
marize how the observational data set is used to emulate the
target trial, and explain how the target trial differs from the
ideal trial (28, 48).
An explicit target trial approach is also advantageous to

improve the quality of big data. When investigators can in-
fluence how data are being actually recorded, a target trial ap-
proach helps them identify critical data items for comparative
effectiveness research and articulate a compelling rationale to
modify data structuring or recording practices. When in-
vestigators from different institutions use a Common Data
Model (56), an explicit target trial approach may assist them
in the development and evolution of the structure and con-
tents of their data model.
The term “big data” has been a branding success compared

with the previously used term “large observational databases.”
Other things being equal, big data is better than small data. In-
deed the sheer size and increasing availability of big data facil-
itates the emulation of target trials. Yet, it is also important to
understand the limitations of large observational databases.
Keenly aware of these limitations, epidemiologists may be-
come reasonably concerned when big data is discussed in
the lay press as an alternative to randomized trials (1). The cer-
tification of big data as research grade will generally require
harmonization and standardization procedures that accommo-
date time-varying clinical workflows, idiosyncratic coding
practices, and changes of software versions. These procedures
require intimate knowledge of the data set and may need to be
followed by costly validation studies and indirect validation
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approaches, suchas comprehensive internal consistency checks
and comparisons across data sets.

Because many decisions need to be made in the absence of
randomized trials, it is important to adopt a sound approach to
the design and analysis of observational studies. Making the
target trial explicit is one step in that direction. Big data—and
the increasingly sophisticated tools used for analysis—may
not always suffice to appropriately emulate our ideal trial.
Even so, the target trial approach allows us to systematically
articulate the tradeoffs that we are willing to accept. This ex-
plicit approach, in combination with subject-matter expertise,
epidemiologic and methodologic proficiency, and innovative
computer science tools, seems our best bet to maximize the
societal benefits of big data for causal inference.
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