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Abstract

Using a small example as an illustration, this article reviews multivariate
matching from the perspective of a working scientist who wishes to make
effective use of available methods. The several goals of multivariate match-
ing are discussed. Matching tools are reviewed, including propensity scores,
covariate distances, fine balance, and related methods such as near-fine and
refined balance, exact and near-exact matching, tactics addressing missing
covariate values, the entire number, and checks of covariate balance. Match-
ing structures are described, such as matching with a variable number of
controls, full matching, subset matching and risk-set matching. Software
packages in R are described. A brief review is given of the theory under-
lying propensity scores and the associated sensitivity analysis concerning an
unobserved covariate omitted from the propensity score.
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1. INTRODUCTION: OBSERVATIONAL STUDIES, CAUSAL EFFECTS,
IMPORTANCE OF DESIGN

1.1. What Are Observational Studies of Treatment Effects?

Cochran (1965, p. 234) defined an observational study as an empirical investigation in which

the objective is to elucidate cause-and-effect relationships [. . .and. . .] it is not feasible to use controlled
experimentation, in the sense of being able to impose the procedures or treatments whose effects it
is desired to discover, or to assign subjects at random to different procedures. ... Examples are the
studies of the relationship between smoking and health, studies of factors that affect the probability of
injuries in motor accidents, studies of the differences in behavior of school children under permissive
and authoritarian regimes, and studies of the effects of new social programmes such as replacing slum
housing by public housing.

A covariate is an attribute or quantity describing an individual prior to assignment to treatment
or control. Absent random assignment, treated and control individuals may differ in terms of co-
variates, so direct comparison of the outcomes of treated individuals and controls may compare
individuals who are not comparable—that is, a direct comparison may be biased as an estimate
of the effect caused by the treatment. A covariate, X, is observed if its value is recorded; other-
wise a covariate, #, is unobserved. From the data, we can see whether treated and control groups
are comparable in terms of observed covariates, x, and we can often remove by adjustments the
differences we can see, for instance by matching for these covariates. Unlike randomized exper-
iments, most if not all observational studies face critical debate centered on the possibility that
adjustments for observed covariates are inadequate to render comparable the treated and control
groups, based on speculation that the groups differ in terms of unobserved covariates, #. Critical
debate of this kind is part of virtually every observational study, not a failure of a particular study,
but studies vary widely in their abilities to inform and address the inevitable debate. This review
focuses on the first step, using multivariate matching to adjust for observed covariates, but the
fate of an observational study is largely determined by whether its design and analysis adequately
address potential bias from unobserved covariates (Rosenbaum 2010, 20152, 2017b). Nonetheless,
matching often facilitates that second step (see Section 5.4).

The line between observed covariates and unobserved covariates is practically and sharply de-
fined by what is observed. If a covariate is observed with measurement error, then the fallible but
observed value is an observed covariate in x, and the difference between the observed and true
values is an unobserved covariate in . If values of a covariate are sometimes missing, then the
observed covariate is either its observed value or a blank, indicating that it is missing; then, an-
other complementary unobserved covariate is either a blank, if the covariate was observed, or it is
the unobserved missing value of the covariate. We may realistically ask that matching balance the
observed values of observed covariates together with the observed pattern of missing data—for in-
stance, that people in certain occupations more often decline to respond to a question about their
incomes—but we cannot realistically ask matching to balance the missing values (Rosenbaum &
Rubin 1984, appendix). Missing values for observed covariates occur in several ways in the example
and are discussed further in Section 4.5.

1.2. Observational Studies Should Be Designed to Resemble
Simple Experiments

In his paper of 1965, Cochran wrote, “The planner of an observational study should always ask
himself the question: ‘How would the study be conducted if it were possible to do it by controlled
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experimentation?” (Cochran 1965, p. 236). An observational study seeks to answer a question that
might have been answered by an experiment, typically an experiment that cannot be conducted
for ethical or practical reasons. The question is the same, the intended answer is the same, and
it is a question about the world, not a question about a particular statistical model: How would a
certain experiment turn out? This experimental question is difficult to answer in an observational
study, because treatments were not randomly assigned to individuals.

Among the basic tools of experimental design are blocking for observed covariates, coun-
terbalancing observed covariates, and randomized treatment assignment to prevent bias from
unobserved covariates. Blocking or pairing before randomization puts together individuals
who are similar in terms of important observed covariates; for a modern method, readers are
directed to Greevy et al. (2004). Sometimes individuals are, of necessity, different: Two locations
in a farmer’s field must be different locations. Where blocking to make individuals the same
is impossible, counterbalancing, as in a Latin square, is used to prevent systematic patterns
in the way treated and control groups differ; for instance, a Latin square on a farmer’s field
prevents assignment of treatment to all of the northern locations in the field. Finally, random
assignment within blocks subject to counterbalancing constraints prevents bias from unmeasured
covariates and provides the “reasoned basis for inference” about the effects caused by treatments,
to use Fisher’s (1935, chapter 2) phrase. An important aspect of Fisher’s theory of inference in
experiments is that randomization inferences require no modeling assumptions, no assumptions
about sampling a population, and no assumption that randomization has succeeded in balancing
unobserved covariates; rather, the inferences account for the imbalances in unobserved covariates
that randomization may by chance produce.

Developing these thoughts, Rubin (2007, pp. 20, 26) wrote:

Observational studies can and should be designed to approximate randomized experiments as closely as
possible. In particular, observational studies should be designed using only background information to
create subgroups of similar treated and control units, where ‘similar’ here refers to their distributions of
background variables [i.e., covariates]. Of great importance, this activity should be conducted without
any access to any outcome data, thereby assuring the objectivity of the design. . . Of course, objectivity
is not the same as finding truth, but I believe that it is generally a necessary ingredient if we are to find
truth.

Designing observational studies to resemble simple experiments has positive and negative as-
pects. One positive aspect emphasizes matching or blocking for observed covariates, either mak-
ing the covariates similar within matched sets or counterbalancing covariates across different sets
when they cannot be made similar within sets. Another positive aspect seeks situations—so-called
natural experiments—in which haphazard and irrelevant factors, rather than careful, purpose-
ful decisions, play a large role in deciding treatment assignments, thereby taking a small step
in the direction of random assignment (Angrist & Krueger 1999, Meyer 1995, Sekhon 2009,
Vandenbroucke 2004). There are negative aspects as well—things the investigator should not do.
The investigator should not obscure the sources of uncertainty present in an observational study
that would have been absent in a randomized experiment. The manner in which an observational
study fails to resemble an experiment should be transparent, open to view, and open to responsible
critical discussion.

1.3. Goals of Matching in Observational Studies
Matching has several goals, including the following.

m Effective design: Prior to collecting outcomes, in the design of an experiment, care is
taken to structure the relationships between treatments and observed covariates, in part
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Randomization:

in experiments and
clinical trials, assigning
treatments by the
independent flips of a
fair coin

Effective design:

a well-designed
observational study
does more to address
the inevitable critical
discussion of possible
bias from unmeasured
covariates
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to minimize confounding and aid transparency (see, e.g., Wu & Hamada 2011). In an
observational study, matching is completed without access to outcomes, so it is part of
the study’s design (see Section 1.2). Just as one compares experimental designs before
picking a satisfactory design, so too one compares several matched designs for an obser-
vational study, selecting a satisfactory design. Because outcomes are not available during
this process, the search for a good design neither biases analyses of outcomes nor requires
corrections for multiple inference.

m Framing one primary analysis: A randomized clinical trial includes a primary analysis that
is described in the trial’s protocol prior to collection of outcomes. A primary analysis does
not preclude secondary and exploratory analyses; rather, it distinguishes such analyses. In
parallel, a matched observational study has a primary analysis built into its design, typically
consisting of a matched comparison of treated and control groups in terms of a primary
outcome. Although John Tukey made many contributions to exploratory data analysis and
to honesty in testing multiple hypotheses, he was also an advocate for focused, confirmatory
analyses. Tukey (1980, p. 24) wrote:

Important questions can demand the most careful planning for confirmatory analysis. . . .Preplan
the main analysis (having even two main analyses may be too many!) . . .I see no real alternative,
in most truly confirmatory studies, to having a single main question—in which a question is
specified by ALL of design, collection, monitoring, and analysis.

m Facilitating exploratory analyses: Colin Mallows remarked, “The most robust method I
know is to look at the data.” You cannot look at observational data until you have adjusted
for observed covariates; otherwise, you may be comparing infants to the elderly and princes
to paupers. If you adjust using a model, then you end up looking at the model, not the data,
because only the model is adjusted for covariates. In contrast, matching permits exploratory
analysis and display of data adjusted for observed covariates. Matching does not preclude ad-
ditional model-based adjustments of a matched sample when these are needed (Rubin 1979).

m Framing critical discussion: Observational studies may be greeted, and perhaps typically
are greeted, with genuine skepticism or credible challenge. Critical discussion often raises
the possibility that treated and control groups are not comparable, despite efforts to make
them comparable. A matched study is simple in form, often transparent, so critical discus-
sion is sometimes enlightening. A neutral audience may feel confident that it understands
a matched observational study, hence also confident in judging, and perhaps rejecting, crit-
ical comments. In contrast, a neutral audience impressed, perhaps even awed, by elaborate
methodology may be shaken by critical comments if it has a shaky understanding of that
elaborate methodology. Addressing critical discussion has technical aspects (Rosenbaum
1991b, 2015a), but these technical aspects are likely to be more compelling to a neutral
audience that feels confident in its understanding of the underlying observational study. As
discussed in Section 5.4, decisions taken during the design of an observational study affect
its ability to address critical discussion; that is, they affect the design sensitivity.

2. MOTIVATING EXAMPLE: ANTIDEPRESSANT MEDICATION
AND BONE DENSITY IN ADOLESCENTS

2.1. Do Selective Serotonin Reuptake Inhibitors Reduce Bone Density?

There is concern that an important class of antidepressant medications, selective serotonin re-
uptake inhibitors (SSRIs), may have the side effect of reducing bone density. Feuer et al. (2015)
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examined this possibility in adolescents using publicly available data from three National Health
and Nutrition Examination Surveys (NHANES), 2005-2010, that obtained bone density mea-
sures for adolescents. In some of their analyses, they compared the total femur bone density of
children aged 12 to 20 who had been receiving an SSRI for at least 180 days to that of other chil-
dren not receiving an SSRI. This comparison will be used here to provide a tangible illustration
of matching concepts and methods. In contrast, the reader should consult Feuer et al. (2015) and
the references there for discussion of the effects of SSRIs on bone density. See the Appendix for
details about use of the NHANES data in this example.

The observed covariates considered here are age (8 to 20 years); gender; black race; Hispanic
ethnicity; family income recorded as a multiple of the poverty level and capped at five times the
poverty level; serum cotinine in ng/mL, which is a marker of recent exposure to tobacco; and
body mass index (BMI). As will be seen in detail later, when comparing the treated group of 49
SSRI users to the entire pool of 6,435 potential controls, the treated group had a much higher
percentage of girls, a much lower percentage of blacks and Hispanics, higher family incomes, and
a higher percentage with exposure to tobacco, but comparable BMIs. Depression in adolescents
is sometimes associated with eating disorders, such as anorexia or bulimia, and diet could affect
bone density. Smoking may affect appetite and bone density. Income, race, and ethnicity are often
associated with various aspects of health, although the mechanism by which that association is
produced is often opaque.

2.2. Before Matching, Treated and Control Groups Are Not Comparable

Figure 1a shows the distribution of age by gender in treated and control groups. Treated girls as
a group are older than control girls, but treated boys are younger than control boys. The bias in
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Figure 1

Age and gender for selective serotonin reuptake inhibitor users (treated) and nonusers (control), before and after matching. Before
matching treated females are older than control females, while treated males are younger than control males, but this is corrected by
matching 10 controls to each treated child.
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Caliper: a caliper on
the propensity score
forbids matching of
two individuals whose
propensity scores are
very different

Propensity score: the
conditional probability
of treatment given the
observed covariates

Covariate distance:
numerical measure
indicating how similar
two individuals are in
terms of observed
covariates x

Near-fine balance:
occurs when the
distributions are as
close to fine balance as
the data will allow

Fine balance: a
nominal covariate has
the same distribution
in matched treated and
control groups; does
not refer to who is
matched to whom
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age for girls is different from the bias in age for boys. Depression in adolescence, or its treatment,
or both, may be different for boys and girls. So the control girls need to be adjusted to be older,
while the control boys need to be adjusted to be younger.

Figure 14 shows that the lower quartile of age for control girls is 10 years old, but almost all of
the treated girls are much older, so many controls look nothing like the treated children. Should
control girls under 10 play a large role in estimating the effect of SSRIs on the bone density
of much older girls, especially when there is an abundance of older girls in NHANES who can
serve as controls? This pattern is greatly understated in Figure 14 because it focuses on just two
covariates. Later, this pattern will become clearer, and also more dramatic, in Figure 3 (discussed
in the following section), where several covariates are considered at once.

Some investigators adjust for covariates using what is known as covariance adjustment, that is,
some form of regression adjustment, say, linear least squares regression, logit regression, or the
proportional hazards model, simply placing the individual covariates in the model along with a
binary indicator of treated or control. Perhaps a complex modeling effort might succeed if skillfully
executed, if it correctly modeled the interactions among the covariates and between covariates and
treatment, but simply placing the covariates in the model one by one would not be adequate here.
Inspection of the formula for least squares covariance adjustment for age shows that it makes
a single adjustment for the overall mean of age; however, it cannot adjust the control girls to
be older and the control boys to be younger. Similarly, the fixed adult standard for BMI does
not apply in childhood, where the normal range of BMI varies with age; so, a single covariance
adjustment for BMI is not appropriate for children of widely varied ages. We would like to compare
treated and control children with similar BMI at the same age. In simulations, Rubin (1979) found
that covariance adjustment unaided by matching can increase, rather than decrease, the bias from
covariates if the model is not quite correct. Rubin suggests that covariance adjustment may serve
as a supplement to, but not a substitute for, matching in the design.

3. EXAMINING A MATCHED COMPARISON

3.1. Checking to See Whether Covariates Are Balanced in Treated
and Matched Control Groups

An important aspect of matching is that a scientific audience can examine a matched design and
can see that matching has successfully balanced observed covariates x, knowing nothing about
how the matched design was constructed except the key element that it was built without access
to the outcomes. Scientific experts can focus on the science, not the matching algorithm. This
match has 49 adolescents treated with SSRIs, each matched to 10 untreated controls, so there
are 490 controls in total. Let us first examine a matched comparison for the example in Section
2.1, then turn to its construction in Section 4. A modern matched sample is built using several
mutually reinforcing technical tools, but in the words of the proverb, the proof of the pudding is
in the eating, not in the stirring: The match can be assessed before or without getting into the
technical details of its construction. As discussed in Section 4, the match was built using a caliper on
the propensity score, minimizing the total covariate distance within the caliper, requiring an exact
match for gender and a near-exact match for a missing BMI, with a near-fine balance constraint for
24 discrete categories built from the interaction of age categories x gender x cotinine categories;
however, the scientific reader does not need to get into any of that to assess whether the match
has produced groups comparable in terms of observed covariates.

Figure 1a shows that, prior to matching, the treated girls were older than the control girls,
while the treated boys were younger than the control boys. Figure 15 shows that matching has
corrected this, so treated and control girls have similar distributions of age, and treated and control
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Figure 2

Cotinine, poverty, and body mass index (BMI) for 49 selective serotonin reuptake inhibitor users, their 490 = 10 x 49 matched
controls, and the remaining 5,945 unmatched potential controls. Unmatched potential controls were poorer and had less cotinine in

their blood, but this is corrected by matching.

boys have similar distributions of age. Figures 15, 2, and 3, and Tables 1 and 2 display covariate
balance, the marginal distribution of covariates in matched groups, ignoring for the moment who
is matched to whom.

Figure 2 looks at three additional covariates. Each panel of Figure 2 shows the distribution
of one covariate in the treated group, the matched control group, and the potential controls not
selected for the matched comparison. We hope to see similar distributions of a covariate for the
treated group and for matched controls.

Cotinine in the blood (ng/mL) is a biomarker for recent exposure to tobacco. High levels of
cotinine are indicative of tobacco use, such as smoking cigarettes, and medium levels are consistent
with an environment in which other people are using tobacco. Because the distribution of cotinine
is extremely skewed, Figure 2 displays log,, (1 4 cotinine). Notably, the treated group has higher
levels of cotinine than the unmatched controls, but this does not occur in the matched sample.

In NHANES, family income is recorded as the ratio of family income to the poverty level and
is capped at five times poverty to preserve confidentiality. In Figure 2, family incomes for SSRI
users are somewhat higher than for the unmatched controls, but matching has corrected this.

In adults, BMI is a common measure of obesity, with values above 25 called overweight and
values above 30 called obese. In children, these norms for BMI no longer apply, and the norms for
BMI vary with age. In Figure 2, the distribution of BMI is similar for the three groups.

The propensity score is the single covariate defined as the conditional probability of treatment
given observed covariates x (see Section 6). The propensity score can be estimated from the ob-
served data without using outcome information, perhaps using a model, such as a logit model, to
predict treatment from observed covariates x. Such a model was fit using age, the poverty measure
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Estimated propensity score for 49 selective serotonin reuptake inhibitor users, their 490 = 10 x 49 matched
controls, and the remaining 5,945 unmatched potential controls. The propensity score was estimated from
three binary indicators for the following: female, black, and Hispanic; age; and poverty ratio and an indicator
for a missing poverty ratio. The unmatched controls are quite different from the rest in terms of their
propensity scores.

in Figure 2, and four binary indicators for female, black, Hispanic, and a missing value of income.
Figure 1a shows this model is not quite correct—there is at least an interaction between age and
gender—but possible misspecification of the propensity score is addressed by several other match-
ing methods in Section 4. In general, the common, recommended joint use of several matching
methods, together with checking covariate balance prior to accepting a matched design, means
that a matched design is not dependent on the success of any single method. The use of multiple
matching methods plus diagnostic checks makes a matched sample multiply robust—robust to
failures of individual methods.

Figure 3 depicts the distribution of estimated propensity scores. The values vary considerably
but rarely exceed 4%. Notably, the distribution of the propensity score for unmatched controls
exhibits limited overlap with the distribution in the treated group, but the matched controls are
similar to the treated group. Taking account of several covariates at once in the propensity score,
the unmatched controls are seen to be very different from the treated group.

Table 1 provides means and percentages for several observed covariates. When a covariate has
missing values, Table 1 describes both the observed values and the percentages of missing values.
Compared with unmatched controls, in addition to the patterns seen in Figures 1-3, the treated
group has more females, fewer blacks, and fewer Hispanics.

In Table 1, the pattern of missing data is also quite different. The pattern of missing data is
observed, but the missing values themselves are not observed. Missing family incomes and cotinine
values are much more common among unmatched potential controls than among treated children.
The pattern of missing BMIs was also different, but this observation requires extended discussion.

Missing BMIs were extremely rare: There were only 13 missing BMIs among all 6,484 children,
or 13/6,484 = 0.2%; however, 2 of the 13 missing BMIs were among the 49 treated children,
or 2/49 = 4.0%, an enormous, 20-fold, relative difference. Because the 6,435 potential controls
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Table 1 Covariate means or percentages for 49 selective serotonin reuptake inhibitor users,
490 = 49 x 10 matched controls, and 5,945 unmatched controls

Treated Control Unmatched
Female % 67.3 67.3 46.3
Age (mean) 14.9 14.7 13.5
Black % 14.3 15.1 28.1
Hispanic % 14.3 14.9 39.9
BMI (mean) 223 22.4 22.5
BMI missing % 4.1 22 0.0
Family income/poverty (mean) 24 24 2.1
Family income/poverty missing % 0.0 0.6 7.0
log;, (1 + cotinine) 0.4 0.4 0.3
Cotinine missing 2.0 2.7 11.1
Propensity score (mean, as a %) 1.7 1.7 0.7

Abbreviation: BMI, body mass index.

contain only 13 —2 = 11 children with missing BMIs, it is not possible to match 10-to-1 and
yet balance the indicator of missing BMI. Among adolescents, depression is sometimes associated =
with eating disorders, leading us to wonder about these missing BMIs. Is the pattern of missing  a¢ching: maximizes
BMIs a reason to worry about the study’s conclusions? The matching method in Section 4 usesa  the number of pairs
technique called near-exact matching to force all 11 potential controls with missing BMIs to be  that are exactly
matched to the two treated children with missing BMIs, although 9 other potential controls were matched for a
. . . . . . covariate but tolerates

matched to these two treated children to maintain the 10-to-1 matching ratio. As will be seenin . = pairs when
a moment, this method of matching for missing BMIs will aid us in thinking about whether to be  they cannot be avoided
worried about the very different pattern of missing BMIs in treated and control groups. We hope
that the missing BMIs are a minor matter, but it would be nice to see something in the observable
data that clinches the matter, perhaps in a graph.

Mostly, we have been checking covariate balance one covariate at a time. In contrast,
Figures 1 and 3 each look at more than one covariate, and these figures suggest that care is
needed to balance the joint distributions of several covariates. Table 2 continues the examination
of the joint distribution of several covariates in the matched sample, specifically age, gender,
and cotinine, including the pattern of missing cotinine values. Consider the upper left corner of

Table 2 Counts illustrating near-fine balance for the interaction of age, gender, and cotinine

Female Male
Cotinine, ng/mL Cotinine, ng/mL
Age Group <2 2-50 >50 Missing <2 2-50 >50 Missing
8-11 Treated 2 1 0 0 4 1 0 0
Control 20 10 0 0 40 9 0 2
12-16 Treated 10 5 0 0 6 1 1 0
Control 100 49 0 1 60 10 10 0
17-20 Treated 12 0 3 0 2 0 0 1
Control 120 0 30 0 18 0 1 10

The total counts are 49 treated children and 490 = 10 x 49 matched controls. In each cell, the control count would equal ten times the treated count if
fine balance were feasible, but there are small, unavoidable deviations from the desired 10-to-1 ratio. Near-fine balance is as close as possible to the desired
10-to-1 ratio.
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Table 2 for female children aged 8 to 11 with cotinine value <2 ng/mL. There are 2 such treated
children and 20 such controls, just what we wanted in a 10-to-1 match. In contrast, for female
children aged 12 to 16 with cotinine values between 2 and 50, the ratio is slightly off—S5 treated
and 49 controls, rather than the desired 5 treated and 50 controls. Table 2 would exhibit a pattern
known as fine balance if every cell had the desired 10-to-1 ratio. Fine balance does not make
reference to who is matched to whom, just to the frequencies in the treated and matched control
groups as a whole. Table 2 is close to fine balance, but there are a few small deviations from fine
balance. In fact, Table 2 exhibits what is known as near-fine balance, meaning that it is as close to
fine balance as the data will permit; that is, the total absolute deviation from fine balance has been
minimized. Actually, the deviation from fine balance was minimized subject to a few constraints;
for instance, precedence was given to the requirement that missing BMIs be matched exactly.
Although there are small deviations from fine balance in Table 2, the balance is better than we ex-
pect from complete randomization. Pimentel et al. (2015a) develop and illustrate a general method
comparing covariate balance in a matched sample to covariate balance in a completely randomized
experiment built from the same data. Essentially, that method compares a table like Table 2 to
10,000 analogous tables from a completely randomized experiment with the same marginal totals.

The match we have been examining seems satisfactory in terms of covariate balance, as seen in
Figures 1-3 and Tables 1 and 2, so we accept this design and turn to the next step of examining
outcomes. The construction of this matched design went through several iterations, as discussed
in Section 4, each improvement removing a problem evident from the previous iteration in
figures or tables similar to Figures 1-3 and Tables 1 and 2. All iterations were conducted
without examining outcomes, and once we accept a design and examine outcomes we cannot go
back and revise the design.

3.2. A Primary Analysis of Outcomes in Matched Groups

Figure 4 depicts the primary analysis of total femur bone mineral density in treated and control
groups. Bone density is somewhat lower in the treated group. To the eye, the marginal distributions
look shifted with similar dispersion and shape. Bone density tends to be lower among children
receiving SSRIs than among matched controls.

The treated boxplot in Figure 44 describes 49 children, while the control boxplot describes 490
children. Is the control group more prone to extreme bone densities? Certainly, the most extreme
bone densities in Figure 44 are all in the control boxplot, but that is not a good guide when one
boxplot describes ten times as many children as the other. We expect the maximum and minimum
of 490 children to be more extreme than the maximum and minimum of 49 children, even if the
two groups were drawn from the same population with no effect of SSRIs. Figure 45 does not
suffer from this limitation: It is a quantile-quantile plot of the distributions of bone densities in
the two groups, and it takes account of the differing sample sizes. Although one cannot be certain
with 49 treated children, Figure 45 does not provide a strong indication of more extreme bone
densities in the control group. Because all but one of the points in Figure 45 fall below the line
of equality, the distribution of bone densities looks stochastically smaller in the treated group.

An M-test is a robust test based on the quantity equated to zero in the definition of
Huber’s (1981) M-estimates. Maritz (1979) developed randomization inference based on M-tests
in matched pairs, and there is a straightforward extension to matched sets with multiple controls
(Rosenbaum 2007).

The difference in Figure 4 would not easily be attributed to chance if it were to occur in a
10-to-1 matched randomized experiment. Using the randomization distribution of an M-test, the
one-sided p-value testing no effect of SSRIs is 0.00020, and the two-sided p-value is twice that.
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Figure 4

Total femur bone mineral density for 49 selective serotonin reuptake inhibitor users and their 490 = 10 x 49 matched controls.

(@) Boxplot of femur density. () Q-Q plot of femur density. Abbreviation: Q-Q, quantile-quantile.

So, Figure 4 would have been convincing evidence that SSRIs reduce bone density had Figure 4
been produced by a randomized experiment. Figure 4 is not, however, from a randomized exper-
iment. Is it useful to have a very small p-value computed from an assumption we know to be false?
Could small departures from a randomized experiment produce a much larger p-value? How far
would treatment assignment in Figure 4 need to depart from a randomized experiment to render
plausible the null hypothesis of no effect of SSRIs on bone density? Figure 4 is matched for sev-
eral observed covariates, but it is easy to think of covariates that were not controlled by matching.
What would such an unobserved covariate have to be like if failure to match for it is to explain
away, as noncausal, the difference seen in Figure 4?

Figure 4 is not from a randomized experiment, but small departures from randomization could
not easily explain the pattern in Figure 4: An unobserved covariate would have to increase the
odds of a lower bone density by a factor of five and increase the odds of treatment with SSRIs
by a factor of three to produce a one-sided p-value of 0.050. Despite the small sample size in
the treated group, the comparison in Figure 4 is not sensitive to small biases from unmeasured
covariates. Of course, a sufficiently large bias can explain away, as noncausal, any association in
any observational study—after all, association, no matter how strong, does not logically entail
causation. Indeed, though insensitive to small biases in treatment assignment, the comparison in
Figure 4 is far more sensitive to unmeasured bias than, say, the studies of smoking as a cause of
lung cancer (Rosenbaum 2002, section 4.3.2).

The calculations in the previous paragraph are a sensitivity analysis for an M-test of no
treatment effect (Rosenbaum 2007, Rosenbaum & Silber 2009). Briefly, in a matched randomized
experiment, the 11 children in a 10-to-1 matched set would each have probability 1/11 of being
randomly assigned to treatment rather than to control. The sensitivity analysis allows that
probability to depart form 1/11, with the magnitude of departure controlled by a sensitivity
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parameter, I, but with the pattern of departure left unspecified, left to do its worst. Specifically,
before matching, two subjects with the same observed covariates might differ in their odds of
Stability analysis: treatment by at most a factor of I' > 1. For I = 1, this produces the randomization inference,
determines whethera ~ the p-value of 0.00020 mentioned above. For T' = 2, you and I might look the same in terms of
minor change in the observed covariates, but because we are not the same in other unobserved ways, you might be
analysis could change a  twice as likely as I to receive the treatment. For I' > 1, there is no longer a single p-value; rather,
study’s conclusion there is an interval of possible p-values depending upon the specific unknown pattern of biases
of magnitude at most I'. If we have rejected the hypothesis of no effect in a randomization test,
as we did with p-value 0.00020 at I = 1, then it is natural to focus on the upper endpoint of the
interval of p-values for I' > 1. By doing this, we ask: What magnitude of bias, I', would need to
be present to produce a p-value that would accept the hypothesis of no effect? In Figure 4, it
turns out that the maximum possible p-value testing no effect just equals the conventional 0.050
level at T' = 2, a moderately large but not enormous bias. For instance, one of the studies of heavy
smoking and lung cancer becomes sensitive to bias at I' = 6 rather than ' = 2, so that study is
insensitive to much larger unmeasured biases (Rosenbaum 2002, section 4.3.2).

There are various aids to interpreting the parameter I'; see, for instance, Rosenbaum (2017b,
table 9.1). In particular, the single parameter I' may be interpreted or amplified in terms of two
parameters, where (#) A limits the association between an unobserved covariate and the treatment,
here SSRIs; (4) A limits the association between the same unobserved covariate and the outcome,
here bone density; and (¢) I' = (AA 4+ 1)/(A + A) (see Rosenbaum & Silber 2009). The claim in
the previous paragraph that an unobserved covariate would have to increase the odds of a lower
bone density by a factor of five and increase the odds of treatment with SSRIs by a factor of
three to produce a one-sided p-value of 0.050 is deduced from I'=2=(5x3+1)/(5+3) =
(AA +1)/(A + A).[The reported calculations were produced by the senm and amplify functions
in the sensitivitymult package in R with default settings, where the p-value of 0.050 is produced
at I' = 2 and amplifies to (A, A) = (3, 5). Additionally, senmCI produces sensitivity analyses for
point estimates and confidence intervals.]

3.3. Secondary and Exploratory Analyses

Figure 5 returns to the issue that missing BMIs, though very rare, were much more common
among SSRI users. We hope that this is a minor issue, and hope to put a minor issue to rest. In
Figure 5, each matched set produces one treated-minus-control difference, and these differences
are plotted. Each difference is the value for the one treated child in a matched set minus a typical
value for the ten controls in the set. The typical value for the ten controls is Huber’s M-estimate,
as implemented in the huber function in the MASS package in R. Structured in this way, we may
compare two boxplots, one with all 49 differences, the other with the 47 differences for 47 matched
sets with complete data on BMI. Figure 5 shows these two boxplots, plus the two omitted differ-
ences as asterisks. The two boxplots look similar, and the omitted points are close to the center
of both boxplots, so it is difficult to imagine any way that the two missing BMIs seriously distort
inferences that use robust methods like M-statistics. It is convenient that matching placed all of
the missing BMIs in two matched sets, so boxplots with and without missing BMIs could easily
be compared.

Figure 5 is a stability analysis. A stability analysis varies a minor analytical decision to check
that it produces only minor changes occur in the conclusions. No explicit statistical assumption
is involved in a stability analysis. In contrast, a sensitivity analysis is an explicit mathemati-
cal calculation: It varies an assumption underlying a statistical procedure to determine what
magnitude of departure from that assumption would be needed to alter the conclusion. The
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Figure 5

Treated-minus-control differences in femur bone mineral density for all 49 matched sets and for the 47
matched sets with complete BMI data. The two asterisks at the right show the two differences for the two
matched sets with some missing BMI data. The gray dashed horizontal line is at zero difference.
Abbreviation: BMI, body mass index.

discussion in Section 3.2 of Figure 4 included a sensitivity analysis that relaxed the naive assump-
tion that treatments were assigned at random within matched sets. As noted in Section 3.2, every
observational study is sensitive to sufficiently large biases from nonrandom treatment assignment,
so the sensitivity analysis answers “how much,” not “whether”: How much bias would need to be
present to change the conclusions? Section 3.2 concluded that no small bias, no matter what its
form, could alter the conclusion, and it defined “small” precisely. People who are confused about
the role of assumptions in statistical inference exhibit a parallel confusion about the distinction
between a stability analysis and a sensitivity analysis, often mislabeling one as the other. If you do
not understand an assumption, then you cannot relax it.

The 10-to-1 match was exact for gender: Boys were matched to boys, girls to girls. There were
16 matched sets containing boys and 33 sets containing girls, with [ = 49 = 16 + 33 sets in total.
Gender would be an effect modifier if the treatment effect were different for boys than for girls.
In general, an effect modifier is an interaction between a covariate and a treatment. Figure 6
compares the sets of boys and the sets of girls. To the eye, the effect of SSRIs looks larger for boys
than for girls, but do remember that the boys are typically younger, and there are only 16 treated
boys. As seen in Figure 1, the available data do not sharply distinguish age and gender: We know
little about the effect of SSRIs on younger girls or older boys because we have very few of them. We
may ask two questions about effect modification: (#) Are we confident that it exists? (b)) Whether
or not we are confident that it exists, are we confident that it alters the degree of sensitivity to
unmeasured biases? Despite the visual impression, in Figure 6 we cannot be confident that there
is effect modification: Applying Wilcoxon’s two-sample test to compare the 16 differences for boys
and the 33 differences for girls, we obtain a two-sided p-value of 0.12.

When there is effect modification, the treatment effect is larger in certain subgroups, and gen-
erally when sample sizes are very large, larger effects are insensitive to larger biases (Rosenbaum
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Figure 6

Treated-minus-control differences in femur bone mineral density for 16 matched sets of boys and 33
matched sets of girls. The gray dashed horizontal line is at zero difference. Recall that the boys are younger.

2010, part 3). Here, the sample sizes are not large. In Figure 6, the method of Lee et al. (2018)
does three sensitivity analyses, the analysis for all [ = 49 sets from Section 3.2, a parallel analy-
sis confined to 16 sets of boys, and a parallel analysis confined to 33 sets of girls, correcting for
performing three correlated tests. That analysis finds that the results for the 16 sets of boys are
insensitive to larger biases than the analysis in Section 3.2 of all I = 49 sets. Specifically, to explain
away the ostensible effect for boys, an unobserved covariate would have to increase the odds of a
lower bone density by more than a factor of eleven and increase the odds of treatment with SSRIs
by a factor of three to produce a one-sided p-value of 0.050. [These calculations use the submax
and amplify functions in the submax package in R with default settings, where the p-value of
0.050 is produced at I' = 2.45 and amplifies to (A, A) = (3, 11.5).]

3.4. Summary of the Examination of a Matched Comparison

Transparency means making evidence evident. It means having warranted confidence about some
topics, warranted concern about others, and no confusion between topics that warrant confidence
and topics that warrant concern. It means accurately informing the critical debate that follows an
observational study, not garbling it. My hope is that the matched comparison in Figures 1-6 and
Tables 1 and 2 strikes you as transparent in this sense. Transparency is a key goal in matched
comparisons.

We saw the following: (#) The matched groups look comparable in terms of measured covari-
ates, including certain aspects of the joint distributions of several covariates at once in Figures 1
and 3 and Table 2. () Total femur bone density looks lower in SSRI users, and this difference is
not readily explained by small biases from nonrandom treatment assignment, though, as always
in any observational study, it could be explained by sufficiently large biases. Bias from nonran-
dom treatment assignment starts to become an alternative explanation at about I' = 2, far from
a trivially small bias, but much smaller than the bias, I' = 6, needed to explain away the associa-
tion between heavy smoking and lung cancer. (¢) The issue of missing BMIs looks to be a minor,
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negligible matter in the stability analysis in Figure 5. (d) The insensitivity to unmeasured biases
is greater for boys, keeping in mind that the boys were younger and we have little data about
younger girls receiving SSRIs.

3.5. How Many Controls?

In Section 2.1, there are I = 49 treated children. One source of uncertainty in Section 2.1 is that
pooling three NHANES surveys yields only 49 treated children. But there are plenty of potential
controls. How many controls should be matched to each treated child? The example matched ten
controls to each treated child. Is that too many? It is too few? How is this issue decided?

Consider a matched study in which each of I treated individuals is matched to ¥ > 1 controls,
making [ treated individuals and «I controls. In Section 2.1, matched pairs means « = 1 with
I =49 treated children and I = 49 controls. Matching with « = 2 means 49 matched sets, each
with one treated child and two controls, making I = 49 treated children and «I =2 x 49 = 98
controls, and so on. The spectrum of possibilities extends from pairs, « = 1, to having infinitely
many controls for each treated individual, far more controls than are available in NHANES.
How does the stability of an estimated treatment effect change as we move along this spectrum?
Stability here refers to sampling variability, the uncertainty from a limited sample size, which
we measure by the variance of the estimator. In observational studies, sampling variably is only
one source of uncertainty; it is typically not the major source of uncertainty, but it is the most
manageable source, and so we should make a sensible choice about managing it before trying to
address the major sources of uncertainty, namely biases from observed and unobserved covariates.

Under a simple, familiar, conventional Gaussian model for matched sets, the variance of the
estimator is proportional to 1 + 1, where the omitted constant of proportionality does not depend
on «, but depends on all sorts of other things: the sample size I, the variance of errors, and so
on (see, for instance, Rosenbaum 2010, section 8.7). Holding all those other things fixed for the
moment, varying just the number « of controls, we see the effects of k completely captured by the
simple formula 1 4 .

For matched pairs, 1 + % =1+ 1 = 2, but with infinitely many controls, k = oo, the constant
becomes 1+ 1 =1+ 0= 1. Adding controls, k — oo, drives out sampling uncertainty among
controls but leaves the treated group untouched, so the instability of our estimator drops in half,
but it does not drop to zero. Even if we had infinitely many controls in Section 2.1, we still
have only I = 49 treated children, and nothing we do with the controls—no model or machine
learning algorithm—is going to change that. If we match with « = 2 controls per treated, then
1+1=1+1=15, and we have traveled half the distance from 2 for pairs to 1 for infinitely
many controls. With « = 4 controls, 1 + % =1+ % = 1.25, so we have cut the distance to in-
finitely many controls in half yet again. It is not that k = 4 controls is wonderful—after all, we
still have only I = 49 treated children in Section 2.1—it simply that driving up the number of
controls, k — oo, rapidly becomes less relevant to the study’s real problems and uncertainties
once k > 4. Economists use the phrase “diminishing returns,” and the formula 1 + 1 exhibits di-
minishing returns with a vengeance: The return to increasing « from 1 to 2 equals the return
from increasing « from 2 to co. With ¥ = 10 controls, 1 + % =1+ % = 1.1, so almost all of the
sampling variability comes from the [ treated subjects, not from the «I controls.

The model in this section is a consequential oversimplification in the following sense. The
model assumes, falsely, that the quality of matched sets can be held fixed as « increases, but that
is far from true. If we pick the closest I = 49 controls for matched pairs, those pairs will be much
closer on covariates than if we take the nearest 4 x 49 = 296 or 10 x 49 = 490 controls. Worst of
all, if we irresponsibly use all of C = 6,435 controls in NHANES, then the bone density of girls
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aged 8 will play an important role in judging the effects of SSRIs on girls whose typical age is 16,
even though not one girl aged 8 received SSRIs. In Section 2.1, we could match each of I =49
treated children to x = 131 ~ 131.32 = 6,435/49 = C/I controls, but the match quality would be
terrible.

The example used x = 10 controls per treated child, mostly because x = 10 yielded matches
of good quality, but this is only slightly better in terms of sampling variability than x = 5 controls,
1+1=12>1.1=1+ . Even the small gain, from 1.2 for x = 5 to 1.1 for ¥ = 10, is larger
than the gain from 1.1 for x = 10 to 1.008 for « = 131 using all controls. If the quality of
the 1-to-10 match had been poor, there would have been little loss in using a 1-to-5 match
instead.

Several matching structures enhance bias reduction by matching with a variable number of
controls rather than a fixed number, « (see Section 5.1). One treated individual has one control,
another has four controls, depending upon the number of similar controls available. However,
using variable numbers of controls rather than a fixed number makes sampling variability worse
by requiring weights in analysis. The best case for sampling variability occurs when matching
with a fixed number « of controls, and, even in this most optimistic case, the gains are small
once k > 5.

4. CONSTRUCTING A MATCHED COMPARISON
4.1. Matching as an Optimization Problem

Modern methods find a match by solving an optimization problem subject to various constraints.
These optimization problems can be described and solved in various ways, but I will describe them
in the simplest way until Section 5.5. The simplest description starts with a table or matrix with
I rows, one for each of I treated individuals, and C columns, one for each potential control. In
Section 2.1,1 =49 and C = 6,435, making a fairly small table of size 49 x 6,435.

Table 3 shows a portion of a 49 x 6,435 distance matrix, specifically the first four rows and
ten columns, for the first four treated children and the first ten potential controls. The NHANES
identifiers for these 14 = 4 + 10 children are given in the Appendix. A distance in Table 3 is small
if two children look similar in terms of observed covariates. For example, the distance between
treated child 4 and control 5 is the smallest in this table, with value 2.0. These two children are
both girls, neither is black or Hispanic, their ages are 12 and 11, and they have BMIs of 21 and 18,
but their cotinine values are quite different. For comparison, treated child 4 is much further from
control 6, with a distance of 25.1: Unlike treated child 4, who has just been described, control 6 is
a Hispanic male aged 16.

Obviously, in a much larger table, the smallest distances are much smaller: In the 49 x 6,435
distance matrix, the smallest distance is not 2.0 but 0.03. For treated child 1, in the 49 x 6,435

Table 3 Robust Mahalanobis distances between the first 4 treated children and the first 10 potential controls
Potential control
Treated 1 2 3 4 5 6 7 8 9 10
1 11.3 24.5 25.8 13.6 18.7 29.6 17.3 224 5.7 13.4
2 5.7 14.1 2.7 13.4 9.7 16.7 9.0 15.8 7.1 9.8
3 11.3 7.6 223 15.3 17.7 17.9 17.9 17.7 20.7 15.7
4 11.3 23.4 18.2 17.8 2.0 25.1 3.4 6.0 9.3 12.9

A small distance means that a treated child resembles a control in terms of observed covariates.
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distance matrix, the closest control child is at distance 0.073, not distance 5.69 in Table 3. For
the first four treated children, the best pair match in the 4 x 6,435 distance matrix is vastly better
than the best pair match in Table 3. Table 3 is simply a tolerably small illustration of matching
concepts. The computation of the distances in Table 3 is discussed in Section 4.5.

Optimal matching is a well-solved problem, but not a trivial one (Bertsekas 1981); that is, large
problems can be quickly solved using existing but nontrivial algorithms. Table 3 illustrates why,
though small, the problem is not trivial. Suppose that we wanted to match each of the 4 treated
children to two controls so that no control is used twice. We cannot go through the table row by
row, picking the two closest controls for each treated child. If we did this, treated child 1 would
want controls 1 and 9, while treated child 2 would want controls 1 and 3, so there is a conflict about
which treated child gets control 1. Obviously, we could develop an elaborate statistical technique
that uses control 1 twice and corrects the analysis for double use of control 1, but that is inefficient
because control 1 does not become two controls by virtue of being used twice; Rosenbaum (2017a,
section 1.2) provides a small numerical illustration of the inefficiency of so-called matching with
replacement. In Table 3, control 10 is almost as good as control 1 for treated child 1, and vastly
better close swaps are available in the 49 x 6,435 distance matrix.

The 10-to-1 match from the 49 x 6,435 distance matrix makes 49 matched sets, each with ten
distances between a treated child and a control, or 490 = 49 x 10 distances in total. The optimal
match will minimize the total of these 490 distances over all possible 10-to-1 matches built from
the 49 x 6,435 distance matrix (Rosenbaum 1989). Hansen’s (2007) pairmatch function in his
optmatch package in R may be used to find this optimal match using the RELAX IV Fortran code
of Bertsekas & Tseng (1988). This optimal matching problem is not solved by a greedy or nearest-
available match that picks the smallest distance in the 49 x 6,435 distance matrix, removes that
column, picks the second smallest distance in the reduced matrix, and so on. The total distance for
greedy matching can be much worse than for optimal matching: The ratio of the total distances
may be arbitrarily large.

The optimal matching or optimal assignment problem is a standard combinatorial optimiza-
tion problem for which several quick solutions are known (Korte & Vygen 2012, chapter 11).
Details aside, perhaps the most intuitive solution is the auction algorithm of Bertsekas (1981).
The problem is that two or more treated individuals may want the same control. How is compe-
tition for the same control to be decided? Bertsekas literally holds an auction, selling controls to
the highest bidder, with prices that adjust as competition emerges for the same control. As prices
rise, a treated subject may settle for the second closest control at a much lower price than the
closest control. In the auction algorithm, some key concepts in optimization, such as duality and
complementary slackness, acquire a familiar economic form. Bertsekas (1990, 2001) provides an
attractive, informal explanation of the auction algorithm.

4.2. Forbidding Certain Matches: Exact Matching and Calipers

We often wish to avoid matching certain controls to certain treated children. The match in
Section 3 imposed two requirements of this kind. First, it required treated and control children
to have an absolute difference in their propensity scores of at most 0.02. A requirement of this
kind is called a caliper (Cochran & Rubin 1973). As seen in Figure 3, a caliper of 0.02 is not a
particularly tight caliper, but it eliminates the worst matches on the propensity score. In Table 3,
we replace a distance by oo if individuals differ on the propensity score by more than 0.02. Also,
the match in Section 3 required boys to be matched to boys, girls to girls, so in Table 3 we replace
a distance in row 7 and column j by oo if treated child 7 and control j have different genders. The
resulting distance matrix is Table 4.
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Table 4 Distance matrix with oo for mismatches for gender and violations of the 0.02 caliper on the propensity score

Treated

Potential control

3 4 5 6 7 8 9 10

1

00 00 00 00 00 00 5.7 00

5.7

o0 00 00 17.9 00 0 00 00

2
3
4

11.3

2
0
0 2.7 13.4 9.7 0 9.0 15.8 7.1 9.8
7.6
0

18.2 17.8 2.0 0 34 6.0 9.3 12.9

Table 5

If we cannot match while avoiding the oos, then matching is said to be infeasible. In
Table 4, matching in pairs, 1-to-1, is feasible, but matching 2-to-1 is infeasible because treated
child 1 has only one potential control, namely control 9. Using the 49 x 6,435 distance matrix,
matching 10-to-1 was feasible in Section 3, meaning that boys were matched to boys, girls to girls,
and the caliper on the propensity score was never violated.

A distance matrix may contain many oos, and when this is so it is wise to determine the location
of the oos first, computing the distances only in positions without cos.

Exact matching for gender is helpful in that it simplifies looking for effect modification by
gender in Figure 6. Exact matching is not essential, however. The method of Lee et al. (2018),
illustrated in Section 3.3, does not require exact matching: It uses all individuals who happen
to be exactly matched. For instance, it might use five controls in one matched set and eight in
another.

4.3. Near-Exact Matching

In Section 3, we wanted to match exactly for the indicator of a missing BMI, but there were too
few controls to do this. In the terminology of Section 4.2, 10-to-1 exact matching for this indicator
is infeasible.

Near-exact matching entails matching exactly as often as is possible but tolerating a mismatch
when one is unavoidable (Rosenbaum 2010, chapter 9). In Table 1, all of the controls with missing
BMIs are included in the matched control group, although that was only 11 controls, not the
desired 20 = 2 x 10 controls. Moreover, every one of these 11 controls was matched to one of
the two treated children with a missing BMI, permitting us to construct Figure 5 in which two
matched sets with some missing BMIs were viewed separately.

In near-exact matching, we do not alter the infinite distances in Table 4, but if a finite distance
corresponds to mismatch for missing BMI, then we add to that finite distance a large penalty. In
Section 3, the penalty was p = 100,000 (see Table 5, where treated child 4 has a missing BMI, but
none of these 10 control children has a missing BMI). In the actual 49 x 6,435 distance matrix,

Treated x control distance matrix penalized for near-exact matching for the indicator of missing BMI

Potential control

1

2 3 4 5 6 7 8 9 10

o]

00 00 00 00 00 00 00 5.7 00

5.7

0 2.7 13.4 9.7 00 9.0 15.8 7.1 9.8

o]

7.6 00 00 0 17.9 00 [e'9) 0 00

S w| o —

11.34p

00 18.2+p 17.84p 2.04+p 00 3.4+p 6.04+p 9.3+p 12.9+p

Treated child 4 had a missing BMI, but none of these ten controls had a missing BMI, so the penalty is imposed throughout row 4. In the example, the
penalty is p = 100,000. Abbreviation: BMI, body mass index.
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there are only 11 of 6,435 columns in which treated child 4 has a distance that is neither co nor
penalized by the addition of p = 100,000.

For large enough p, a minimum distance match will avoid the penalized distances whenever
possible, but in Section 3 it will be forced to accept 9 penalized distances. Notice that, because
p = 100,000 is added to the original distances, if forced to incur the penalty p, the minimum
distance match would still prefer to match treated child 4 to control 5 rather than to control 3.

A nominal covariate, such as gender, has two or more unordered categories. Near-exact match-
ing can be used with M > 1 nominal covariates by adding a large penalty of p for a mismatch on
covariate 1, another penalty of p for a mismatch on covariate 2, . . ., yet another penalty of p for a
mismatch on covariate M. For large enough p, this will minimize the total number of mismatches
on the M nominal covariates, and among designs that do this, it will minimize the total of the
within-pair covariate distances. This tactic can be useful when studying effect modification, as in
Section 3.3, Hsu et al. (2015), and Lee et al. (2018, appendix).

Use exact and near-exact matching sparingly. Exact or near-exact matching may be helpful for
one or a few nominal covariates, as in Figures 5 and 6, but it is not possible when the number, M,
of nominal covariates is large (see Rosenbaum 2017b, table 5.6). Consider using fine balance or
refined balance instead (see Section 4.4). When an important nominal covariate has many levels,
near-exact matching may usefully be combined with fine balance (Zubizarreta et al. 2011).

For large enough p, penalized distances give total priority to the covariates chosen for near-
exact matching, so other covariates may be poorly matched. Small penalties—not p = 100,000, but
perhaps p = 1 or p = 2—are sometimes used informally but successfully to give more emphasis to
a few problematic covariates. If a balance table such as Table 1 exhibits an unacceptable imbalance
for a particular nominal covariate, then a small penalty may fix this. There are many informal but
practical variations on this theme of changing the distances to emphasize problematic covariates.

4.4. Fine Balance and Related Techniques

In the discussion in Section 3.1 of Table 2, the concepts of fine balance and near-fine balance were
introduced. In Table 2, fine balance would mean a 10-to-1 ratio of control-to-treated counts in
every one of the 24 = 3 x 2 x 4 cells—that s, in every age x gender x cotinine cell. Fine balance
is not feasible in Section 3.1 given the other requirements, such as exact matching for gender and
the caliper on the propensity score. Instead, Table 2 exhibits near-fine balance: Each cell is as
close as possible to the desired 10-to-1 ratio; that is, more precisely, the total count of deviations
is as small as possible. Fine balance and near-fine balance do not refer to who is matched to whom;
rather, they describe the distribution of individuals over the 24 = 3 x 2 x 4 cells in the treated and
control groups. Exact matching for gender implied fine balance for gender alone. In contrast, fine
balance for the six age x gender categories finds older control girls and younger control boys,
as seen in Figure 1, but it does not imply children are exactly matched for these six categories.
Nonetheless, the covariate distances try to closely match individuals for age.

Fine balance and its relatives can be implemented in several ways (Pimentel et al. 2015a,
Rosenbaum 1989, Rosenbaum et al. 2007, Yang et al. 2012, Zubizarreta 2012), although some of
these variations are of more interest to programmers than to scientists. The goal is a minimum
distance match subject to the constraint of fine balance. The discussion that follows gives the gist
of the idea, leaving practical implementation to Section 4.6. Fine balance is like sculpting: We are
interested in the sculpture left behind, but the art is in what you take away. We remove controls
in such a way that a finely balanced sample remains. Table 6 imagines that we wish to finely
balance “black race” in a 2-to-1 match in Table 5, ignoring for a moment the infeasibility of
matching treated child 1 to two controls in this small table. Notice that treated children 2 and 3
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Table 6 Distance matrix augmented to finely balance black race (indicated by b)

Potential control
1b 2b 3b 4b 5 6 7 8 9 10
1 00 00 00 00 ) 00 00 () 5.7 00
2b 5.7 00 2.7 134 9.7 o0 9.0 15.8 7.1 9.8
3b 00 7.6 ) 00 00 17.9 00 00 00 )
11.3+p 00 18.2+p 17.8+p 2.0+p 00 3.44p 6.0+p 9.3+p 12.9+p
5 00 00 00 00 0 0 0 0 0 0

An auxiliary row 5 is added to the distance matrix. Were it feasible, a minimum distance 2-to-1 match would pair two nonblack controls to auxiliary 5, and

then this matched set would be deleted, leaving behind a finely balanced match. Note that the addition of row 5 does not require blacks to be matched with

blacks; rather, it corrects the imbalance in the frequency of blacks.
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are black, as are controls 1, 2, 3, and 4. In a 2-to-1 match, fine balance for black race would mean
that controls 1, 2, 3, and 4 are included as controls, though they may or may not be matched to
treated children 2 and 3. Table 6 adds a fifth auxiliary row at infinite distance from all the black
controls and at zero distance from the six nonblack controls. Were minimum distance matching
feasible in Table 5, a minimum distance match in Table 6 would match two nonblack controls
to the auxiliary row. Discarding the matched set for the auxiliary row leaves behind a 2-to-1
match finely balanced for black race; moreover, it would minimize the total distance subject to
the constraint that the match is finely balanced.

Table 2 viewed its 24 = 3 x 2 x 4 cells as one nominal variable with 24 categories. That is
reasonable when fine balance is feasible. However, if fine balance is infeasible, if as in Table 2 we
must tolerate small deviations from fine balance, then we may prefer certain deviations to others.
For instance, if we must tolerate an imbalance for cotinine, we might prefer to retain balance for
age. Pimentel et al. (2015a) introduce the concept of refined balance in which the 24 categories
are given a hierarchical structure, say, gender first, age second, cotinine third. In refined balance,
gender is balanced as closely as possible, age as closely as possible subject to the requirement that
gender is maximally balanced, and cotinine is balanced as closely as possible subject to the require-
ment that gender and age are maximally balanced. The nice thing about refined balance is that
adding many less important covariates to the bottom of the hierarchy does not degrade the balance
achieved for the most important covariates at the top of the hierarchy. In an example, Pimentel
et al. (2015a) balanced a hierarchically structured nominal covariate with 2.8 million levels.

Table 2 attempts to finely balance a joint distribution of three covariates with 24 =3 x 2 x 4
levels. Zubizarreta (2012) developed a method for finely balancing the marginal distributions of
several individual variables without balancing their joint distributions. He later extended this idea
to strength K balance, in which all of the joint distributions of K of M covariates are balanced
(Hsu et al. 2015). For example, strength 2 balance of gender, age, and cotinine would balance the
joint distribution of gender and age, of gender and cotinine, and of age and cotinine, but might not
balance the three-way joint distribution. Strength K balance and refined balance are two strategies
for implementing fine balance with a factorial array of many covariates.

4.5. Robust Mahalanobis Distances

Rosenbaum & Rubin (1985a) suggested matching to minimize the Mahalanobis distance within
calipers defined by the propensity score. As discussed in Section 6, matching for one covariate, the
propensity score, tends to balance all of the covariates used to build that score, but two individuals
with the same propensity score may differ in important ways. Use of the Mahalanobis distance
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inside propensity score calipers tries to balance covariates and also pair similar individuals. Also,
as mentioned in Section 3.1, use of the Mahalanobis distance in addition to the propensity score
is one of several layers of protection against the failure of a single matching technique. Perhaps
mistakenly, we ignored the age-by-gender interaction in Figure 12 when building the propensity
score, but both near-fine balance in Section 4.4 and the Mahalanobis distance paid attention to
that interaction, and Figure 15 shows that the interaction is balanced in the matched sample.

The Mahalanobis distance has a property, affine invariance, which means that certain changes
to the data do not change the distance. A convenient practical consequence occurs when a covariate
has missing data, as is true of income and cotinine in Figure 2. If a covariate, say income, has
missing data, then do two things: Replace the missing incomes by an arbitrary number, say the
mean or the median income, and include a binary variable indicating missing income, so income
is represented by two covariates in the distance. Then the Mahalanobis distance is unchanged by
changing the arbitrary number substituted for the missing incomes, and when income is missing,
the distance prefers to pair people with missing incomes. As noted previously, such a tactic tends
to balance the observed pattern of missing data, as seen in Table 1, but of course it cannot be
expected to balance the missing values themselves. The propensity scores obtained from a linear
logit model also have this property of affine invariance when a covariate and its missing indicator
are both included in the model (Rosenbaum & Rubin 1984, appendix).

The Mahalanobis distance is linked to the multivariate Normal distribution, and it can do some
odd things with data that are not Normal. Take a second look at Figure 2. An outlier or long tails in
one covariate can inflate the sample variance for that covariate, leading the Mahalanobis distance
to pay little attention to the covariate. Binary covariates are common, but fair coin flips have much
larger variances than rare binary traits, so the Mahalanobis distance pays much more attention to
mismatches for rare binary covariates than for binary covariates that divide the population in half.
The Mahalanobis distance is much more concerned to pair US residents who live in Wyoming,
much less concerned to pair men to men and women to women. Small adjustments remove both
oddities at a small price (Rosenbaum 2010, chapter 8).

The covariate distance in Table 3 is one robust version of the Mahalanobis distance
(Rosenbaum 2010, chapter 8). Before computing the Mahalanobis distance, covariates are replaced
by their ranks, with average ranks for ties. Ranks eliminate concerns about outliers and long tails.
Ties reduce the variance of ranks, but the covariance matrix of the ranks is rescaled so that every
covariate has its untied variance, the same value for every covariate. Covariates, like rare binary
covariates, do not become more important as they become rarer and hence more heavily tied. Alas,
this particular robust distance is no longer affinely invariant. In Table 3, medians and indicators
were used in the distance for missing income and cotinine.

4.6. Software in R

For matching, I recommend six software packages in R, namely optmatch, rcbalance, bigmatch,
nbpMatching, designmatch, and DiPs. The first three use the auction algorithm of Bertsekas
(1981) and the Fortran code of Bertsekas & Tseng (1988); they all require you to load the optmatch
package and accept its academic license, but no special installation is required, so they install and
execute as easily as other R packages. In contrast, designmatch runs best with a commercial solver,
either gurobi or Cplex; these are available for free to academics but require a special installation.

Hansen’s optmatch is the earliest of these packages (Hansen & Klopfer 2006). It excels when
matching with a variable number of controls or with full matching. Use of optmatch is discussed
in Hansen (2007) and Rosenbaum (2010, chapter 13). The DOS package in R contains data sets
from Rosenbaum (2010) that may be used to learn about and compare the five matching packages.
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Pimentel’s rcbalance package implements refined covariate balance (Pimentel et al. 2015a),
as well as fine balance and near-fine balance. Use of the package is illustrated in Pimentel (2016).
The companion package rcbsubset implements a form of subset matching.

Yu’s bigmatch package uses various techniques to match large data sets, hundreds of thousands
of people, in a single optimization (Yu et al. 2019), although it can be used with smaller data sets
as well. The package uses a version of Glover’s (1967) algorithm to find an optimal caliper for the
propensity score, and it can apply near-fine balance on a very large scale.

The nbpMatching package (Lu et al. 2011) uses the algorithm and Fortran code of Derigs
(1988) to implement so-called nonbipartite (i.e., not two parts) matching. Instead of matching
treated individuals to controls, nbpMatching divides one population into pairs so that the total
distance within pairs is minimized. Nonbipartite matching has a variety of applications: (z) in
optimal matching before randomization in experiments (Greevy et al. 2004), (/) in strengthening
an instrumental variable (Baiocchi et al. 2010, 2014), and (¢) in testing the fit of the Gaussian linear
model (Pimentel et al. 2017).

Zubizarreta’s (2012) designmatch differs from the others in using mixed integer programming
rather than network optimization techniques. The relevant network optimization techniques can
be implemented to run in polynomial time, that is, rather quickly, whereas some integer pro-
grams are very difficult to solve. The designmatch package offers a wide variety of new match-
ing tactics without a firm promise that they can be implemented with reasonable computational
effort; yet, the package typically performs competitively without such a promise. For instance,
designmatch can finely balance many one-dimensional marginal distributions without balancing
their interactions, or it can balance their two-dimensional joint distributions without balancing
higher-way joint distributions. It can balance means, variances, covariances, empirical distribu-
tion functions and other attributes of distributions. Also, designmatch implements cardinality
matching (Zubizarreta et al. 2014a).

Yu’s DiPs package contains a flexible, basic function, match, that implements many modern
matching techniques in a simple form. The package offers several additional devices using di-
rectional penalties and Lagrangians that can improve the balance for a few covariates that are
somewhat out-of-balance in an existing match.

The exteriorMatch package constructs the exterior match that is used to compare two over-
lapping matched control groups (Rosenbaum & Silber 2013). For sensitivity analysis in matched
observational studies, consider the senm and senmCI functions in the sensitivitymult pack-
age (Rosenbaum 2015b); these are illustrated in a shinyapp (https://rosenbap.shinyapps.io/
learnsenShiny/).

5. BRIEF DISCUSSION OF ADDITIONAL PRACTICAL TOPICS

The current section briefly discusses a number of additional practical topics with references to the
literature. Some of these topics are reviewed in greater detail by Stuart (2010) and Rosenbaum
(2010, part II; 2017b, chapter 11).

5.1. Variable Controls and Full Matching

The focus has been on pair matching or matching with a fixed number of controls, but full match-
ing and matching with a variable number of controls have some advantages and disadvantages
(Austin & Stuart 2015, Hansen & Klopfer 2006, Ming & Rosenbaum 2000, Pimentel et al. 2015b,
Rosenbaum 1991a). Today in the United States, if you were matching smokers to nonsmoking
controls, you would find that few people with a college degree are smokers. As a result, a smoker

Rosenbaum


https://rosenbap.shinyapps.io/learnsenShiny/

Annu. Rev. Stat. Appl. 2020.7:143-176. Downloaded from www.annualreviews.org
Access provided by University of Lausanne on 02/19/21. For personal use only

with a college degree would have available many nonsmokers as potential controls, while smokers
who did not complete high school would have fewer controls available. Matching with a variable
number of controls might give five controls to the smoker with a college degree but only one or
two controls to the smoker who did not finish high school. Yoon’s entire number can guide de-
cisions about how many controls to match to particular individuals, and this is discussed further
Section 6.5.

Full matching takes this a step further, creating matched sets that contain either one treated
individual and one or more controls, or else one control and one or more treated individuals. Full
matching has certain optimal properties and can match everyone (Rosenbaum 1991a). Hansen’s
(2007) optmatch package implements full matching in R. Hansen (2004) presents an interesting
application of full matching.

5.2. Subset Matching

Treated and potential control groups sometimes exhibit too little overlap on covariates to permit
matching of the entire treated group, and various forms of subset matching have been proposed.
If only a subset of the treated population is matched, then the question addressed by the study has
been changed (Rosenbaum & Rubin 1985b). Nonetheless, the revised question may be interesting,
and it often focuses on the border region between two established treatments, perhaps a narrow
zone in which both treatments are commonly used. The conclusions of a study of such a border
region might shift the location of the border region, so that over a period of years, a sequence
of studies might gradually eliminate one of the two established treatments by showing it remains
inferior as the border shifts.

Crump et al. (2009) suggested defining the treated population to exclude extreme propensity
scores (see Section 6). A population defined by an interval of values of the propensity score may
be difficult to interpret—it may, for instance, lack a clinical meaning to physicians because it fails
to pick out a natural group of patients—so several authors have suggested methods to trim the
population in an interpretable way (Fogarty et al. 2016, Traskin & Small 2011). For instance,
medical studies commonly limit the population under study to a rectangle of some dimension
defined by intervals of several covariates, say age 20—65 with stage 2-3 breast cancer, and Fogarty
etal. (2016) and Traskin & Small (2011) used algorithms to find such a rectangle in which matching
is feasible. In contrast, Rosenbaum (2012) used an optimal matching algorithm that has the option
of discarding, at a price, a treated individual who is very difficult to match. Zubizarreta et al. (2014a)
proposed maximum cardinality matching that finds the largest matched sample exhibiting good
covariate balance. Pimentel’s R package rcbsubset and Zubizarreta’s R package designmatch
implement versions of subset matching.

5.3. Beyond Treatment Versus Control Comparisons

Matching can strengthen quasi-experimental devices. For instance, matching can be used with
multiple control groups (Daniel et al. 2008, Karmakar et al. 2019, Lu & Rosenbaum 2004,
Pimentel et al. 2016, Rosenbaum & Silber 2013, Stuart & Rubin 2008). It can also be used to
ensure local estimation of treatment effects in discontinuity designs (Keele et al. 2015, Gelman &
Imbens 2019). Matching may be used to strengthen a weak instrumental variable (Baiocchi et al.
2010, 2012; Keele & Morgan 2016; Ertefaie et al. 2018). Multilevel matching, for instance, of
schools to schools, and students to students within matched schools, was introduced by Zubizarreta
& Keele (2017).

Risk set matching is used to compare treatments that may be given at various times, perhaps
a treatment, such as incarceration or surgery or joining a gang, that may occur in response to
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a particular development (Apel & Sweeten 2010, Haviland et al. 2008, Li et al. 2001, Lu 2005,
Nieuwbeerta etal. 2009, Zubizarreta et al. 2014b). Daniel etal. (2013) provide a general discussion
of treatments given at various times and subject to confounding that changes with time.

5.4. Matching and Sensitivity to Unmeasured Biases

The design of an observational study affects its sensitivity to unmeasured biases (Rosenbaum 2004,
2010; Zubizarreta et al. 2013). For the example in Section 2.1, an analysis of sensitivity to unmea-
sured biases is conducted in Section 3.2. The findings of such a sensitivity analysis are affected
by the study’s design in predictable ways, so that better decisions made during study design result
in reporting insensitivity to larger biases when the data are analyzed. For instance, Section 2.1
restricted attention to children with at least six months of exposure to SSRIs, which would omit
a child with five days of exposure. Omitting negligible exposures increases the design sensitiv-
ity, the limiting sensitivity to bias as the sample size increases (see Rosenbaum 2004, table 3, and
Rosenbaum 2010, section 17.3). Balancing all covariates but matching closely for covariates that
strongly predict the outcome also improves the design sensitivity (Rosenbaum 2005, Zubizarreta
et al. 2014a), as does the use of ¥ > 2 controls per treated subject (Rosenbaum 2013). Clustered
treatment assignment and multilevel matching also affect sensitivity to unmeasured biases (Hansen
etal. 2014).

5.5. Omitted Technical Topics

This review of matching techniques has emphasized practical rather than technical topics. The
technical literature on matching in observational studies includes the following two topics not
discussed here.

First, a technical article typically contains a proof of one kind or another saying that a
particular algorithm or tactic optimizes a certain function subject to certain constraints, i.e., that
a well-defined optimization problem has been solved. For instance, I made such an assertion in
Section 4.4 about adding row 5 to Table 6, but of course one needs a general statement with a
proof (Rosenbaum et al. 2007). Alternatively, the article may prove that a particular algorithm
provides what may be a suboptimal solution, but one that is only slightly worse than the optimal
solution (Crama & Spieksma 1992, Karmakar et al. 2019, Vazirani 2010, Williamson & Shmoys
2011). Typically, one tolerates such an approximation algorithm when there is a proof that no
algorithm can guarantee a quick optimal solution to large problems.

Second, a technical article may prove that, in the worst case, a particular optimization or ap-
proximation algorithm runs in time proportional to some power of the size of the problem. Results
of this kind typically draw upon the extensive literature in computer science and operations re-
search (Bang-Jensen & Gutin 2009, Bertsekas 1998, Burkard et al. 2009, Korte & Vygen 2012).
For instance, minimum distance pair matching with C' > [ potential controls can be implemented
to run in time that is at most O(C?), although this may decline to O{C? log(C)} if the number
of finite distances in the distance matrix is at most p!I for some constant p > 1. For comparison,
sorting C numbers can be implemented to run in O{Clog(C)} steps. Results of this kind may guide
the design of algorithms for large matching problems.

Optimal matching has been described in terms of optimal pairing of the rows and columns
of a matrix of distances, the so-called optimal assignment problem. Instead, it may be described
in terms of minimizing the cost of a flow in a network (Bertsekas 1998, Rosenbaum 1989). At
a high level of abstraction, the two formulations are equivalent, but complicated tasks are often
easier to visualize, understand, and program with the aid of a network. Alternatively, matching
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may be viewed as an integer program with special features that make it computationally tractable
(see Korte & Vygen 2012, section 5.4, and Zubizarreta 2012). In R, the callrelax function of
Pimentel’s rcbalance package provides direct access to the Fortran subroutine of Bertsekas &
Tseng (1988) that solves the minimum cost flow problem in a network. For more information
about using gurobi to solve integer programs and other optimization problems inside R, readers
are directed to http://www.gurobi.com/products/modeling-languages/r.

Bertsekas (1998) provides an introduction to network optimization algorithms. Attractive, con-
cise introductions to integer programming are given by Bertsimas & Tsitsiklis (1997, chapters 7,
10, and 11) and Wolsey (1998).

6. SOME THEORY
6.1. Motivation

The goal in Section 6 is to sketch a few relevant aspects of the theory of multivariate matching.
Must we match exactly for observed covariates? Or does it suffice to merely balance observed
covariates? Must the pairs each be exactly the same in terms of observed covariates, or is it sufficient
that the treated and control groups have the same distributions of observed covariates? Clearly,
in one sense, it suffices neither to match exactly nor to balance observed covariates, because bias
from unmeasured covariates is possible. So we rephrase the initial question: If it did suffice to
match exactly for observed covariates, would it also suffice to merely balance them? Hopefully,
the answer is yes, because it is not possible to match exactly for many observed covariates at once,
and happily, the answer is indeed yes. In contrast to matching exactly, balancing many observed
covariates is often quite practical (see Section 6.3).

It is easy to think of many possible unobserved covariates. Does this mean that addressing the
issue of unobserved covariates entails thinking about many covariates at once? At least conceptu-
ally, the answer turns out to be no: There is only one scalar unobserved covariate  that can do any
harm—the principal unobserved covariate—and it always satisfies 0 < # < 1. The principal unob-
served covariate can do quite a bit of harm but, for what it is worth, that harm is one-dimensional
(see Section 6.3).

Suppose one of the many observed covariates is innocuous: In some suitable sense, it predicts
treatment assignment but not outcomes once you take account of the other observed covariates.
Suppose that, because you cannot imagine that you are mistaken about the innocuous nature of this
covariate, you decide to exclude it from matching, letting it exhibit a substantial imbalance between
the treated and control groups. Perhaps you hope that this supposedly innocuous covariate will
determine many treatment assignments, thereby attenuating bias from unmeasured covariates.
Several investigators have examined this possibility (Brooks & Ohsfeldt 2013, Sanni et al. 2014),
but in this case qualitative and quantitative findings clash (see Section 6.4). For instance, this
issue arises when deciding whether or not to adjust for the provider of health care (Walker 2013,
Zubizarreta et al. 2012).

6.2. Causal Effects as Comparisons of Potential Outcomes Under
Competing Treatments

Write Z = 1 for a child in Section 2.1 who is treated with an SSRI and Z = 0 for a control child, so
49 children have Z = 1 and 6,435 potential controls have Z = 0. Each of the 49 + 6,435 = 6,484
children in Section 2.1 has two potential femur bone densities, 77 if treated with an SSRI, or 7¢
under the control condition without SSRI treatment, but we see 77 only for the 49 treated children
with Z = 1, and we see 7¢ for the 6,435 potential controls with Z = 0. The causal effect of SSRIs
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on bone density is a comparison of 7 and 7¢, such as 7 — 7, but this is not observed for any child
(see Neyman 1990 and Rubin 1974).

Write R = Zry + (1 — Z) r¢ for the observed bone density for a child, that is, R = 7 for a
treated child with Z = 1 or R = s for a control child with Z = 0; then, we observe (R, Z, x) for
every child, where x is the observed covariate. A simple, though often inadequate, formalism views
the 6,484 children as a random sample independently drawn from an infinite population, and this
simple view is adopted in the following brief discussion.

6.3. Propensity Scores, Ignorable Treatment Assignment, and the Principal
Unobserved Covariate

"This section contains a brief discussion of propensity scores, mostly based on Rosenbaum & Rubin
(1983). For the conditional probability of treatment, Z = 1, given the observed covariates, x, write
A =X (x) = Pr(Z = 1]|x), so that A is a random variable as it is a function of x, which is, itself, a
random variable. Then A = A (x) is called the propensity score. Because A (x) refers only to Z and
x, which are part of the observed data (R, Z, x), we may estimate A (x) from observed data, perhaps
using a model, such as a logit model predicting Z from x.

Following Dawid (1979), write A | | B|C for A is conditionally independent of B given C. Then
we have the following covariate balancing property of propensity scores,

x11Z] 2, L
or equivalently,
Prix|Z=1,2)=Pr(x|Z=0,2), 2.

which says that treated and control subjects with the same propensity score, 1, have the same
distribution of observed covariates, x. In a randomized experiment in which treatments are
assigned by independent flips of a fair coin, A = (x) =1/2 for all x, so Equation 2 be-
comes Pr(x | Z=1)=Pr(x | Z = 0); however, in general in observational studies, 2 = 1 (x)
does vary with x, but Equation 2 says that systematic bias in the observed covariate x is cap-
tured by a single or scalar covariate, A. [The proof of Equation 2 is immediate (Rosenbaum &
Rubin 1983, theorem 1): Trivially, A = Pr(Z = 1|x) = Pr(Z = 1|x, A) because A = 1 (x) is a
function of x, and Pr(Z = 1|A) = E{Pr(Z = 1|x,A) | A} = E{Pr(Z =1|x)| A} = E(A|A) = A,
so Pr(Z = 1|x, ») = Pr(Z = 1| 1), proving Equation 2.]

Alas, the propensity score, A (x), is not quite the quantity that we need. The propensity score
balances observed covariates, as in Equation 2, but balancing observed covariates is not generally
sufficient to estimate the effects caused by treatments. Write { = Pr(Z = 1|x, rr, 7¢). We cannot
estimate { = Pr(Z = 1|x, 77, 7¢) from observable data because we always observe R but never
observe (rr,7¢). In parallel with Equation 2, we have:

(X7 T, TC) uZ’ ¢

so that
Pr(rr,re| Z=1,¢)=Pr(rpr,7vc| Z=0,¢)=Pr(rr, rc| ¢) 3.
and
Pr(rr,rel Z=1,%,¢)=Pr(ry,rc1 Z=0,x, §) =Pr(rr, rcl x, ¢).
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(The proof of Equation 3 is the same as the proof of Equation 2, with (x, 7, 7¢) in place of x and
¢ in place of A.) If somehow we could sample a value of ¢ at random, and sample one treated sub-
ject, Z = 1, and one control, Z = 0, with this value of ¢, then the matched-pair difference in their
responses would be an unbiased estimate of the average treatment effect, E (r — r¢), because
Equation 3 implies E(R| Z=1,8)=E(rr|Z=1,¢)=E(rr| ¢) and E(R| Z=0,¢) =
E(rc1 Z=0,¢)=E(r¢| ¢),and uiviallyE (rp —r¢) = E{E (77| ) —E(r¢| ¢) | ¢}.Indeed,
by the same argument, we obtain an unbiased estimate of E (ry — 7¢) by a treated-minus-control
pair difference in outcomes matching for both ¢ and any function b (x) of the observed covariates,
X.

‘Treatment assignment Z is said to be ignorable given observed covariates x if (7, 7¢) || Z| x
and 0 < A (x) < 1, or equivalently, if

0<¢=Pr(Z=1|xrp,7c)=Pr(Z=1|x) =1 < 1. 4.

For instance, treatment assignment would be ignorable given x if treatments were assigned by
independently flipping a fair coin, in which case Pr (Z = 1|x,7r,7¢) = Pr(Z = 1|x) = 1/2. More
generally, treatment assignment would be ignorable given x if treatments were independently
assigned with coins whose probabilities of success were a function of x alone and were neither
zero nor one. If treatment assignment were ignorable given x, so { = 2 in Equation 4, then using
Equation 3 as above shows that matching for the propensity score A = A (x) alone or matching for
the propensity score plus any function b (x) of x yields an unbiased estimate of E (rr — 7).

In brief, bias from observed covariates x acts through a unidimensional summary, namely
the propensity score, A = A (x) = Pr(Z = 1|x), while bias from observed and unobserved co-
variates jointly act through another unidimensional summary, namely ¢ = Pr(Z = 1|x, 77, 7¢).
There is no bias from unobserved covariates if treatment assignment is ignorable given x, that is,
if 0 < 2 = ¢ < 1, and then adjustments for x or A or both suffice to estimate treatment effects. If
X # ¢, then only by fortunate and unlikely coincidence will adjustments for x or 2 yield an unbiased
estimate of E (r; — 7¢). There is always a single unobserved covariate # with 0 < # < 1 such that
(rr,7¢) |1 Z| (x, u), namely u = ¢, as a consequence of Equation 3. Frangakis & Rubin (2002)
refer to the potential outcomes, (rr,7¢), as the principal stratification, and consistent with that
terminology, one might refer to u = { = Pr(Z = 1|x,7r,7¢) as the principal unobserved covari-
ate, the only one that matters. The condition (r7,7¢) || Z | (x, w) with 0 < u < 1 gives structure
to one form of sensitivity analysis in observational studies, entertaining the possibility that ignor-
ability fails to hold, A # ¢, because the propensity score A omits an unobserved covariate # (see
Rosenbaum 1987b and Rosenbaum 2002, section 4). This is the sensitivity analysis illustrated in
Section 3.2.

6.4. Attenuation of Unmeasured Biases

Does leaving an innocuous observed covariate unmatched attenuate bias from an unmeasured
covariate? The current section briefly sketches results in Pimentel et al. (2016).

Partition the observed covariate x into x = (x1,X;). Suppose throughout the following discus-
sion that treatment assignment would have been ignorable given (xy,x,,#) had the covariate u
been measured, so the failure to measure # is the source of our problems. Following Heller et al.
(2010), say that x, is innocuous given (x1,%) if (rr,7c) || (Z,%2) | (x1, ). If x; were innocuous in
this sense, then the problem remains that # is not measured, but x; is not part of that problem,
because treatment assignment is ignorable given (xy, #). Would it be wise to leave x, unmatched?
Would doing this attenuate or reduce the bias from «?
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Pimentel et al. (2016, definition 3) call x, a prod to receive treatment if x, lu‘ x; and
var{Pr(Z = 1|xy,x2, %) | x;,u} > 0. If x; is a prod, then it provides no new information about #,
but it induces some variation in treatment assignment Z. Pimentel et al. (2016, proposition 1)
show that if x; is a prod and is innocuous, then leaving x, unmatched attenuates bias; essentially,
it reduces the relevant value of I in a sensitivity analysis. This is the qualitative fact: Under strong
assumptions that are difficult if not impossible to check, bias is attenuated.

Quantitatively, how large is the attenuation? In a simple model with a Gaussian x;, if the bias
from u is enormous, there can be meaningful attenuation, but the bias that remains from u is
still enormous (e.g., I' attenuates from 10 to 9.07), whereas if the bias from # is moderate, the
attenuation is trivially small (e.g., I" attenuates from 1.5 to 1.47); this calculation and others can be
found in Pimentel et al. (2016, table 1). Slightly larger attenuation is possible by forcing separation
on x,, rather than merely leaving it unmatched.

These and related results lead Pimentel et al. (2016) to argue against leaving x, unmatched:
Too little attenuation is produced by assumptions that are too strong and too speculative. Instead,
if the claim thatx; is an innocuous prod seems plausible, they argue that two control groups should
be constructed, one matched for (x;,x;), the other for x; alone perhaps forcing separation on x,.
With two control groups formed in this way, the investigator can examine and report the situation
from both perspectives, without endorsing strong speculative assumptions. Because the presence
of two control groups entails multiple analyses, appropriate methods are needed to control the
family-wise error rate in sensitivity analyses (Pimentel et al. 2016, section 6).

6.5. Some Extensions

Commonly, we do not sample a value A of the propensity score at random, finding a treated and
control subject with this A. Rather, as in the example in Section 2.1, we take the entire treated
group, Z = 1, and match its members to controls with similar A. A parallel argument shows that
if treatment assignment were ignorable given x, then matched pairs would provide an unbiased
estimate of the average effect of the treatment on the treated group, E (rr —r¢| Z =1) (see
Rosenbaum & Rubin 1985b).

Yoon calls the quantity  (x) = {1 — A (x)} /A (x) the “entire number,” and he observes that we
expect to see 7 (x) controls for each treated individual when the observed covariate equals x. Esti-
mating 7 (x) can provide an additional perspective on the question in Sections 3.5 and 5.1, namely,
how many controls to match to a treated individual. The entire number, 1 (x), is particularly rel-
evant in full matching or in matching with a variable number of controls, as 7 (x) acts as an upper
limit on the number of controls available at x. Pimentel et al. (2015b) shows the use of the en-
tire number in an extension of the concept of fine balance to matching with a variable number of
controls.

Although the propensity score, A (x), can be estimated from observed data, we do not have
direct access to the true propensity score, raising questions about inference. If A (x) followed a
linear logit model with unknown parameters, then these unknown parameters may be eliminated
by conditioning, with exact inferences about treatment effects based on the resulting known
permutation distribution of treatment assignments; moreover, these exact inferences permit
straightforward asymptotic approximations (Rosenbaum 1984). Viewed from a different perspec-
tive, an estimated propensity score resembles poststratification of a random sample in surveys;
that is, the inverse-probability weighted estimate often performs somewhat better with estimated
propensity scores than with the true propensity score (Rosenbaum 1987a). All of this presumes
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treatment assignment is ignorable. Slight overfitting of a correctly specified propensity score has
the harmless, perhaps slightly beneficial, effect of slightly overbalancing covariates in Equation
2, producing slightly better balance than coin flips.

APPENDIX: DETAILS OF THE NHANES EXAMPLE

The example is from NHANES 2005-2010, merging three surveys. The SSRIs are d03157=
paroxetine, d00236=fluoxetine, d00880=sertraline, d03804=fluvoxamine, d04332=citalopram,
and d04812=escitalopram, and the analysis is restricted to children with ages 8 to 20, as in Feuer
etal. (2015, p. 29). As in some, but not all, analyses in Feuer et al. (2015), the analysis is restricted
to children with either no current exposure to an SSRI or current exposure extending back for
at least 180 days; so, children with current but brief exposures are excluded. To be included, an
individual had to have had dual energy X-ray absorptiometry for the femur and had to have a
nonmissing value for the duration of exposure to SSRIs. For children with >180 days of use of
SSRIs, there are 49 treated children in the matched comparison, rather than 42 in Feuer et al.
(2015, table 3), in part because missing covariates did not lead to exclusion. In Table 3 and later
distance tables, the 10 potential controls in the columns have NHANES identifiers 1 = 31128,
2 =31129,3 =31133,4=31137,5 =31140,6 = 31141,7 = 31145,8 = 31146,9 = 31148, and
10 = 31157, and the 4 treated children in the rows have 1 = 31430, 2 = 31641, 3 = 32390, and
4 =32652.

1. Matching is done without access to outcomes, so it is an aspect of the design of an ob-
servational study. Design ends and analysis begins when outcomes are examined for the
first ime. Complete and write the design section of an empirical paper before examining
outcomes.

2. In parallel with a randomized clinical trial, a matched observational study should plan
and define a primary analysis defined prior to the examination of outcomes.

3. Modern matching algorithms use a tool kit that includes propensity scores, minimum
distance matching, near-exact matching, fine balance, and related techniques.

4. Use of several matching tools produces desired properties, such as balance for many
covariates, close pairing for key covariates, and the ability to examine a subset of pairs
exactly matched for a possible effect modifier. Use of several matching tools provides
some robustness to the failure of any one tool used alone.

5. The balance achieved by a matching should be closely examined before accepting a
matched design, before examining outcomes. Modern matching techniques provide
many ways to improve a matched design that has not yet achieved adequate control for
covariates.

6. Improved design of an observational study can reduce its sensitivity to unmeasured bi-
ases, as demonstrated in its sensitivity analysis, and as anticipated from theory by its
design sensitivity. Improved design can better inform and address the inevitable debate
that follows every consequential observational study.
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1. Currently, matching employs fast network optimization algorithms to build optimal
comparisons of a treated and a control group. More complex designs for observational
studies cannot be optimized by polynomial-time algorithms, but approximation algo-
rithms are just beginning to provide near optimal designs in polynomial time (Karmakar
etal. 2019).

2. Administrative databases are becoming ever larger yet also ever more accessible. These
databases include Medicare claims data (Silber et al. 2014, 2016) and other similar health
records, national data on unemployment compensation (Card et al. 2007, Lalive et al.
2006), and credit card data (Gross & Souleles 2002). Matching methods for very large
databases are just beginning to be developed (Yu et al. 2019).
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