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Abstract

A longstanding idea in the literature on human cooperation is that cooperation should be reinforced when conditional
cooperators are more likely to interact. In the context of social networks, this idea implies that cooperation should fare
better in highly clustered networks such as cliques than in networks with low clustering such as random networks. To test
this hypothesis, we conducted a series of web-based experiments, in which 24 individuals played a local public goods game
arranged on one of five network topologies that varied between disconnected cliques and a random regular graph. In
contrast with previous theoretical work, we found that network topology had no significant effect on average contributions.
This result implies either that individuals are not conditional cooperators, or else that cooperation does not benefit from
positive reinforcement between connected neighbors. We then tested both of these possibilities in two subsequent series
of experiments in which artificial seed players were introduced, making either full or zero contributions. First, we found that
although players did generally behave like conditional cooperators, they were as likely to decrease their contributions in
response to low contributing neighbors as they were to increase their contributions in response to high contributing
neighbors. Second, we found that positive effects of cooperation were contagious only to direct neighbors in the network.
In total we report on 113 human subjects experiments, highlighting the speed, flexibility, and cost-effectiveness of web-
based experiments over those conducted in physical labs.
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Introduction

Why, and under what conditions, presumptively selfish

individuals cooperate is a prevailing question in social science

that has stimulated an extraordinary range of explanations, many

of which have focused on the strategic benefits of cooperation. For

example, although displays of altruism may appear to run counter

to an individual’s self-interest, it is possible to show that if one

assumes that individuals possess sufficiently strong other-regarding

preferences, then altruism may in fact convey selfish benefits as

well [1]. Moreover in a social context, behavior that appears

purely altruistic may also accrue individual benefits either because

others explicitly reward pro-social behavior [2,3] or punish selfish

behavior [4–7]. Finally, individuals may be rewarded indirectly for

cooperating, either because a good reputation conveys other

transactional benefits [8], or because altruistic behavior can be

viewed as a signal of reproductive fitness [9].

In addition to explanations that focus on individual strategies, a

longstanding idea is that cooperative behavior might arise as a

consequence of the population structure itself [10]. Although

initially proposed in the context of evolutionary biology, this idea

has particular relevance for social dilemmas among human actors,

where the total population is large, but the effects of any one

individual’s actions fall disproportionately on a relatively small set

of neighbors determined either by spatial or social proximity. For

example, smog or acid rain causing pollutants disproportionately

impact geographically proximate populations; thus one can think

of the game as playing out on some approximation of a spatial

lattice. Correspondingly, the benefit derived from social network-

ing sites (e.g. Facebook) is highly dependent on the activities and

contributions of one’s immediate social acquaintances, whose

identities in turn depend some complicated mixture of social and

spatial distance [11]. Because in either case an individual’s

neighbors are themselves connected to others, who are in turn

connected to others still, and so on, the dynamics of social

dilemmas can be thought of as taking place on extended networks

[12,13]. In these settings, outcomes of interest, such as aggregate

levels of cooperation, plausibly depend on the structure of the

network as well as on the strategies of the individuals in the

population [14].

There are two main reasons to suspect that cooperation should

depend on network structure. The first reason is that many

theoretical models of social dilemmas assume that cooperation is

conditional, in the sense that an individual will only cooperate on

the condition that its partners are also cooperating. Arguably the

clearest example of the principle of conditional cooperation is the

celebrated Tit-For-Tat strategy, which has consistently been

shown to outperform more exploitative strategies in a range of

simulation studies, in large part because it performs well when

interacting with other cooperative strategies [15]. In addition,

related strategies have also been proposed that generalize the idea

of conditional cooperation to multi-player settings [16,17], usually
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by specifying some form of threshold requirement—i.e. ‘‘I will

cooperate if at least X of my neighbors cooperated last round, else

I will defect.’’ Regardless of the specifics of the rule, the

implication of these results for networks is that networks

characterized by high levels of local clustering [18], meaning that

an individual’s neighbors are also likely to be neighbors of each

other, ought to sustain higher aggregate levels of cooperation than

populations in which individuals are randomly mixed [19]. Put

another way, local reinforcement would imply that when an

individual’s neighbors also interact with each other, they are in a

better position to reinforce one another’s pro-social behavior, and

so may be expected to resist ‘‘invasion’’ by defecting strategies

better than when each neighbor interacts with a different set of

others.

The second reason to suspect that network structure should

impact cooperation is that cooperation in networks might be

‘‘contagious.’’ Specifically, if A is a conditional cooperator

surrounded mostly by cooperating neighbors, A will cooperate

more; but then A’s increased cooperation may cause its remaining

neighbors to cooperate more as well. These neighbors may in turn

cause their neighbors to cooperate more as well, and so on, leading

to a cascade of cooperation that sustains itself over multiple steps.

In fact, recently it has been claimed that cooperation is

characterized by a ‘‘three degrees of influence’’ rule [20], meaning

that an individual who increases his or her level of cooperation can

positively impact the contribution of an individual who is three

steps removed from them in the network. Because the number of

individuals who can be reached within three degrees of a

cooperating individual will in general depend on the non-local

structure of the network [18], the presence of social contagion

would imply that network features other than local clustering

should also impact aggregate cooperation levels.

Although these heuristic arguments suggest that network

structure plausibly impacts cooperation, two other arguments

suggest the opposite conclusion. First, even if it is true that

unconditional cooperators will benefit from preferential interac-

tion and hence network clustering, conditional cooperation is

known to cut both ways, leading as easily to defection as to

cooperation [15]. In effect, the assertion that preferential

interaction among conditional cooperators will also aid coopera-

tion makes the additional implicit assumption that individuals

initially cooperate—an assumption that may or may not hold in

practice. Second, the contagion argument implicitly assumes

relatively ‘‘tight’’ coupling between neighbors. In coordination

games, for example, paired individuals have very clear incentives

to choose actions to coordinate with their network neighbors. For

example, if A chooses an action that does not coordinate with a

one of its neighbors B, then B will have a clear incentive to change

its action to accommodate A. If B changes its action, then another

of B’s neighbors, say C, who is not directly connected to A will

nevertheless have an equally clear incentive to coordinate with B

as well. In coordination games, therefore, it is easy to see how the

influence of one player’s action can propagate along chains of

intermediaries to affect non-neighbors. And because conditionally

cooperative strategies have something of the flavor of coordination

games, it is tempting to infer that they lead to the same kind of

contagion—indeed it is precisely this intuition that studies like [20]

appear to support. However, it is much less clear that individual

strategies for resolving social dilemmas do in fact exhibit the same

kind of coupling as observed in coordination games, or even

should in theory.

In addition to these theoretical arguments, simulation studies of

games over networks have also reached mixed conclusions with

respect to the impact of network structure on contributions. For

example, a number of simulation studies of social dilemmas on

spatial lattices [21,22], and more recently on networks [16,23],

have found that under certain conditions network structure

impacts levels. It should be noted, however, that all these results

depend on numerous modeling assumptions regarding the

behavioral strategies of individual players. Because so many

strategies are conceivable, and because the success of conditional

cooperation depends on what other strategies are present, it is

ultimately inconclusive what can be learned from simulation

studies about how real human players will interact in networks.

Finally, experimental evidence concerning the role of network

structure is also inconclusive. Although a number of ‘‘networked

games’’ experiments have been conducted in recent years using

human subjects [24–27], they have generally focused on other

games, like graph coloring [26], consensus [25], economic

exchange [24], and diffusion of social influence [28]. Many of

these experiments have found that network structure dramatically

impacts collective behavior, consistent with the arguments above.

Because all these games differ from one another in subtle but

important ways, and because none of them precisely resemble

social dilemmas, it remains unclear how these findings can be

extended to the question of cooperation on networks. Meanwhile,

the extensive experimental literature that explicitly addresses

cooperation has largely focused on interactions between pairs [29],

or within small, completely connected groups [30–32]. To our

knowledge, only one experiment has been conducted to test

directly for the effects of networks structure, by Cassar [27], who

concluded that ‘small-world’ networks (i.e. with high local

clustering and short global path lengths) support higher contribu-

tion levels in a linear public goods game than randomly connected

networks—consistent with the intuition outlined above. For

reasons we outline below, however, Cassar’s findings were

ultimately inconclusive.

As a result of the ambiguous and even conflicting conclusions of

previous theoretical, simulation and experimental results, there is a

clear need for clarifying experimental evidence. The main

substantive contribution of this paper is to investigate the

relationship between network structure and cooperation in a

series of networked public goods experiments. The experiments we

report on were conducted over the World Wide Web using the

popular crowdsourcing platform, Amazon Mechanical Turk

(http://www.mturk.com). AMT is a web-based labor market

originally created to facilitate crowdsourcing [33] of tasks, called

human intelligence tasks, or HITs, that are easier for humans than

for machines—such as, image labeling, sentiment analysis, or

classification of URLs. In addition to its role as a labor market,

however, AMT can also be thought of as a convenient pool of

subjects willing to participate in laboratory-style behavioral

experiments. Mechanical Turk and other web-based experimental

platforms are becoming increasingly popular with behavioral

science researchers, in part because they allow experiments to be

run faster and more cheaply, and in part because they afford

access to potentially a much broader cross-section of the

population than is typical of university-based lab experiments

[34–38]. A second contribution of this work, therefore, is to

advance the scope of behavioral experiments conducted on AMT

to include networked games and more generally, games where all

players play simultaneously.

Results

We conducted a total of 113 experiments on AMT over a

period of 6 months. In each of these experiments participants

played a widely studied variant of a social dilemma, called a public

Cooperation in Networked Public Goods Experiments
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goods or common pool resource game [39,40]. Typically such

games last for a number rounds, where in each round individuals

make voluntary contributions to a common pool. The pool is then

augmented in some manner, reflecting the added benefits of the

public good. After augmentation the pool is then redistributed to

the players, where all players receive an equal share regardless of

their contributions. Although many specific variants of this general

class of games have been proposed [40], we studied a variant of a

standard one in the experimental literature [30,31,41] defined by

the payoff function pi~ei{ciz
a

n

Xn

j~1
cj where pi is the payoff

to individual i, ei is i’s endowment, ci is i’s voluntary contribution,

a is the amount by which collective contributions are multiplied

before being redistributed, and n is the group size. Critically, when

1vavn, meaning that the marginal per capita return M~
a

n
lies

in the range 0vMv1 players face a social dilemma in the sense

that social welfare is maximized when all individuals contribute

the maximum amount, but players have a selfish incentive to free

ride on the contributions of others.

Experimental Design
In contrast with standard public goods games, in which

participants’ contributions are shared among members of the

same group, here participants are arranged in a network. To

reflect this change, players’ payoffs are subject to the modified

payoff function pi~ei{ciz
a

kz1

X
j[C(i)

cj , where in place of

the summation over the entire group of n players, payoffs are

instead summed over C(i), the network neighborhood of i (which

we define to include i itself), and k is the vertex degree (all nodes in

all networks have the same degree). Therefore, i’s contributions

are, in effect, divided equally among the edges of the graph that

are incident on i, where payoffs are correspondingly summed over

i’s edges. Aside from this change, our experimental design was

kept as similar as possible to previous work, in order to make

comparisons possible. Specifically, we ran each experiment for 10

rounds, where the first two rounds each lasted 45 seconds and all

subsequent rounds lasted 30 seconds. In each round, each

participant received e~10 after which they were required to

nominate a contribution 0ƒciƒe to the common pool. The pool

was then augmented and then redistributed to the players, where

all players received an equal share regardless of their contribu-

tions, as described in the payoff function above. At the end of each

round, each player received the following information, which is

identical to the information given to the players in [32]: (a) their

contribution for that round, (b) the contributions of each of their

neighbors for that round, and (c) their own cumulative payoff up to

that point. The information visible to players is shown in Figure 1.

As shown in Figure 2, we chose networks that spanned a wide

range of possible structures between a collection of four

disconnected cliques at one extreme, and a regular random graph

at the other. All networks comprised n~24 players, each with

constant vertex degree k~5; however, they varied with respect to

three frequently studied structural parameters, summarized in

Table 1: (a) the clustering coefficient C~
2

n

Xn

i~i

Ki

k(k{1)
where

Figure 1. Screen shot of the experiment.
doi:10.1371/journal.pone.0016836.g001
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Ki is the number of completed triangles in node i’s neighborhood;

(b) the average path length L~SdijT where the average distance

between all pairs of nodes is taken over each connected

component; and (c) the diameter D~max dij , which is the

distance between the farthest two nodes. The clustering coefficient

of node i is computed by dividing the number of triangles incident

on i by the number of triangles possible given i’s degree. The

clustering coefficient of a network, which is the average clustering

coefficient over all nodes, is therefore a local measure of structure

that captures the extent to which the neighbors of i are also

neighbors of each other. The average path length and diameter,

by contrast, are global network measures that quantify the extent

to which effects can propagate along chains of network ties.

In spite of these structural differences, we note that from the

perspective of the players, all positions in all networks will seem

indistinguishable—players always see themselves interacting with a

local network of five others, as in Figure 1. Why then, might we

expect the network structure to make any difference? The answer

is that although players always play with k neighbors, the

relationship between their neighbors changes as a function of

the network. When the network in question is a clique—a set of

kz1 nodes in which every node is connected to every other—our

formulation reduces to the standard design in which the group size

n~kz1. For a general network, however, n and k can be

specified more or less independently (except that n§kz1), and

the connectivity between an individual i’s neighbors can also vary

dramatically. In a clique, that is, every neighbor of i is connected

to every other neighbor, whereas in a random graph, i’s neighbors

will be connected to each other with probability roughly k=n
which tends to 0 when n&k. We note that our design differs from

previous studies that have compared so-called ‘‘partner’’ vs.

‘‘stranger’’ conditions [32], where in the former condition

individuals play with the same partners for multiple rounds,

whereas in the latter condition they are randomly rematched on

each round. In our design, individuals always play with the same

people as in the partner condition. It is the relationship between

partners that is different across different network structures. If

the ‘‘reinforcement’’ hypothesis, outlined above, is correct, there-

fore, the actions of an individual’s neighbors ought to be

dependent on the actions of their neighbors, and hence the

experience of the focal individual will depend on the density of

interaction between his or her immediate neighbors. Likewise, if

the ‘‘contagion’’ hypothesis is correct, the focal individual’s

experience will depend in addition on the actions of individuals

Figure 2. The five networks used in the experiment. (A) four cliques of six players each; (B) two connected components of twelve players
constructed by choosing one pair of players in each of two of the cliques in A, and swapping partners; (C) cycle of near-cliques constructed by
choosing a pair in each of the four cliques in A and deterministically swapping an edge with a pair from another clique so as form a cycle; (D) ‘‘small
world’’ type network formed by swapping four randomly chosen pairs of edges from C; (E) a random regular graph in which all nodes have the same
degree k~5. In all cases, the filled in nodes were used as seed nodes in the intervention experiments (see text for details). Each seed node is color-
coded, and nodes connected directly to a given seed are outlined with the same color. All nodes in all networks are directly connected to exactly one
seed node, except for Random Regular where two nodes are each directly connected to two seed nodes (green double circles) and two nodes are not
directly connected to any seed node (orange rectangles).
doi:10.1371/journal.pone.0016836.g002
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by two or more steps away. Thus our choice of topologies

was specifically designed to highlight the importance both of local

reinforcement and contagion.

Recruiting and Retention
The Amazon Mechanical Turk (AMT) community comprises

two types of actors: requesters and workers. Requesters can be

individuals or corporations, and can list jobs along with a specified

compensation. Workers, also known as ‘‘turkers,’’ are paid by

requesters to complete individual tasks. When choosing a task to

work on, workers are presented with a list of jobs that are subdivided

into HITs. Each job contains the title of the job being offered, the

reward being offered per HIT, and the number of HITs available

for that job. Workers can click on a link to view a brief description of

the task, or can request a preview of the HIT. In our case, we posted

the experiment as a HIT and recruited workers as subjects to do the

experiment. After seeing the preview, workers could choose to

accept the HIT, at which point the work was officially assigned to

them and they could begin completing the task. HITs range widely

in size and nature, requiring from seconds to hours to complete, and

compensation varies accordingly, but is typically on the order of

$0.01–$0.10 per HIT. Currently, several hundred requests may be

available on any given day, representing tens of thousands of HITs

(i.e. a single request may comprise hundreds or even thousands of

individual HITs). AMT also provides a convenient API for

transferring payments from requesters to workers.

Although AMT and other web-based experimental platforms

are becoming increasingly popular with behavioral science

researchers, the bulk of previous work has relied on experimental

designs that are asynchronous, in the sense that they do not

require a large group of subjects to participate at the same time. In

[42], for example, participants arrived sequentially, and only saw

information about the behavior of previous participants, while in

[43], at most pairs of participants were required to be present

simultaneously. In our experiment, however we required all

players to participate simultaneously—a problem that is solved in

physical labs by announcing official start times and supervising

experiments with trained proctors. To resolve this problem, we

instituted a number of web-specific experimental procedures, as

described next and in more detail in [38].

The Waiting Room. Because it was impossible to assure that

participants arrived at precisely the same time, and also because

different participants required more or less time to read the

instructions and pass the quiz (see below), we created a virtual

‘‘waiting room,’’ similar to [44]. Once they had accepted the HIT

and passed the quiz, participants saw a screen informing them that

the experiment had not yet filled, along with how many remaining

players were required. Once all positions had been filled,

participants in the waiting room were informed that the game

was about to commence.

The Panel. In a series of preliminary experiments, we learned

that simply posting the HIT on AMT was insufficient to fill

networks of size n~24 in a reasonable time, resulting in

participants abandoning the waiting room and the HIT being

terminated. To alleviate this problem, we ran a series of

experiments with n~4, for which waiting times were reasonable,

and then at end of each experiment, allowed participants to opt-in

to being notified of future runs of our experiment. In this manner,

we created a standing panel of 152 players who had played

previously and who understood the instructions (i.e. they qualified

as experienced players, consistent with previous work [31]). All

113 experiments reported here were conducted using this panel,

the self-reported demographic composition of which is reported in

Table 2. The evening before any experiments were to be held, we

Table 1. Properties of the five network topologies.

Cliques
Paired
Cliques Cycle

Small
World

Random
Regular

Clustering
Coefficient (C)

1.00 0.80 0.60 0.41 0.09

Average Path
Length (L)

1.00 1.81 2.54 2.23 2.01

Diameter (D) ? ? 5 4 3

Return on
Investment (ROI)

1.04 1.09 1.38 0.80 1.00

doi:10.1371/journal.pone.0016836.t002

Table 2. Self-reported demographic information of panel
members.

Gender Male 61.8

Female 35.5

Did Not Answer 2.7

Average Age 32

Highest degree or level
of school completed

High School 21.1

Associates 9.2

Bachelors 42.1

Masters 18.4

Doctorate 3.9

Professional 3.9

Did Not Answer 1.4

Race Asian 26.3

Black or African American 1.3

American Indian or Alaskan Native 0.7

White 69.7

Did Not Answer 2.0

Marital Status Divorced 4.6

Now Married 42.1

Never Married 49.3

Separated 2.0

Did Not Answer 2.0

Total Annual Household
Income

v 10k 13.8

10k–20k 13.2

20k–30k 9.9

30k–40k 12.5

40k–50k 15.1

50k–60k 7.2

60k–70k 5.3

70k–80k 4.6

80k–90k 2.0

90k–100k 2.6

100k–150k 6.6

w 150k 5.9

Did Not Answer 1.4

doi:10.1371/journal.pone.0016836.t001

Cooperation in Networked Public Goods Experiments

PLoS ONE | www.plosone.org 5 March 2011 | Volume 6 | Issue 3 | e16836



sent messages to the panel (via the AMT API), informing them

what time the experiments would be, typically at 11am, 1pm, 3pm

and 5pm EST, although other times of day were used in a few

instances. We also posted the time of the next days experiments on

turkernation.com, a bulletin board site for turkers. At the

announced times, participants would log in to AMT, where the

first 24 players to read the following instructions and pass the quiz

at the end of it were allowed to enter the experiment.

Handling Dropouts. In spite of these precautions, individual

participants would occasionally fail to enter a contribution on one

or more turns, or leave the game entirely. In rare instances, a

participant who had accepted the HIT and passed the quiz did not

participate at all in the game. To handle these circumstances, we

adopted the following rules: 1) If a player had entered at least one

contribution, and if they subsequently failed to enter a

contribution, the system would automatically enter the same

contribution as their previous round. 2) If a player did not enter an

initial contribution, the system would random choose a

contribution of either 0 or 10 for that player (roughly 70% of

the contributions during round 1 where either 0 or 10). To avoid

biasing our results, we only used data from a given realization if at

least 90% of the contributions in the entire experiment were

actually made by human players.

Calibrating the AMT population
Before proceeding with our main results, we first address two

legitimate sources of skepticism regarding web-based experiments.

First, subjects playing at home or at work may behave

systematically differently from those playing in a physical lab;

thus the results obtained in a web environment may not be

comparable to those obtained in lab-based studies. To address this

issue, we conducted a series of 24 preliminary experiments that

were designed to replicate the conditions of a previous lab-based

study [32]. Specifically, we arranged the players in completely

connected groups (cliques) of n~4 (equivalent to k~3) and set

M~0:4. One difference between our design and [32] was that

per-round endowments in our experiment were 10 points, instead

of 20. Normalizing for these different endowments, however,

Figure 3A shows striking agreement between the two sets of results,

where we note that qualitatively similar average contribution levels

have also been found in other experimental studies [31]. A second

issue is that the compensation rates in AMT are substantially lower

than in traditional lab experiments; thus one might suspect that

subjects are correspondingly less motivated to play seriously.

Previous studies such as [45] have shown that for these types of

economic experiments, paying a low or high rate does not have a

large impact on results as long as the payoff amount has a nonzero

dependency on performance. Nevertheless, we conducted an

additional series of 16 experiments which alternated the

compensation between $0.01 per point and $0.005 per point

(participants were also paid a fixed up-front fee of $0.50 for

accepting the task and passing the quiz). As Figure 3B shows,

contribution levels for both compensation levels were similar,

which is also consistent with prior work [45]. We therefore

conclude that neither compensation rates nor context significantly

affected the behavior of subjects in our games, relative to previous

studies. Thus reassured, we now proceed to discuss our main

results, which concern behavior on networks.

Testing for Effects of Network Structure
In the first set of network experiments all positions in the

network were filled by human players recruited from AMT.

Because individual contributions tended to vary considerably from

one experiment to the next, and different players were likely to

play at different times of day, we conducted multiple realizations of

the experiment for each topology (see Table 3). The order and

timing of experiments was randomly varied between realizations.

In total, we conducted 23 experiments over a period of 8 weeks.

Figure 4A shows the average contribution for each round, for each

of the five topologies. Visually, the average contribution follows a

very similar pattern regardless of the network topology. This result

is confirmed by a Kruskal-Wallis test [46] on the five distributions

(one for each topology) of contributions for each round, which

found no significant differences (the smallest P-value is for round 8:

H = 6.43, df = 4, P = 0.17). Figure 4A also shows that contribution

curves that start higher, relative to other curves, tend to stay above

the other curves over the course of the experiments; yet, clearly the

first round contributions are random and unrelated to the

topology of the network. To see the differences between topologies

more directly, therefore, Figure 4B shows the same contribution

curves as in 4A, but shifted vertically in order that they have the

same initial value. As can be seen, eliminating these initial

difference further diminishes the already small differences between

topologies.

Figure 3. Calibrating the AMT platform. (A) Comparison of contributions for identical linear public goods games conducted on Amazon
Mechanical Turk and in a physical lab [32]. (B) Contributions for different compensation levels. In both panels error bars indicate 95% confidence
intervals.
doi:10.1371/journal.pone.0016836.g003
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In addition to considering differences in aggregate contribu-

tions, we also checked for differences between topologies both at

the level of individual nodes, and for individual ‘‘groups’’ defined

as the nodes that are assigned to the same cliques in topology 1 (see

colors in Figure 2). As Figure 2 indicates, these groups become

progressively less meaningful as the clustering coefficient dimin-

ishes: in the Random Regular topology, two nodes in the same

group (same color) are no more likely to be connected than nodes

of different groups. In spite of these topological differences,

however, Figure 5 indicates that they do not impact contributions;

specifically, the fraction of groups contributing at least X in a given

round is similar for all topologies, and over all rounds. Finally,

Figure 6 shows the full distribution of individual level contributions

for the five topologies (color coded) over all ten rounds. Although

all distributions change dramatically over the course of the game,

reflecting the average decline in contributions seen in Figure 4, the

changes are similar for all topologies. Thus we conclude that

topology does not exert a noticeable impact on contributions at

any level: individual, group, or aggregate.
Comparison of Results with Cassar (2007). Cassar [27]

conducted a total of 11, 18-player prisoner dilemma experiments

on networks of players, where the networks were varied between

the following three topologies: a ‘‘local’’ network on which

individuals were arranged on a cycle, and each individual was

connected to their two nearest and two next-nearest neighbors (i.e.

k~�kk~4 for all nodes); a ‘‘small-world’’ network in which a small

fraction of the edges in the cycle were rewired (hence �kk~4, but

individual k varied); and a ‘‘random’’ network in which individuals

were randomly connected (again, �kk~4, but individual k varied).

Three realizations of each topology were tested; thus clustering

coefficient varied between 0:06ƒCƒ0:5, depending on topology,

and path length varied between 2:03ƒLƒ2:67, where the local

topology had the highest C and L, the random topology had the

lowest, and the small-world topology was intermediate. Cassar

found that cooperation in the small-world topology was

significantly lower than either the local or the random topology

(Table 5, p. 224 in [27]). She also found that in a logit model, the

terms for C and L were negative and positive respectively, and

both were significant (Table 10, p. 227 [27]).

At first glance, these findings appear to contradict our own;

however, we note that the differences reported as significant in

Cassars Table 5 are between cumulative contributions, over the 80

rounds of the experiments. Yet as noted above, and also by Cassar

(see her Footnote 13), if the contributions in one realization start at

a higher level than other realizations, they tend to stay above the

other realizations for the duration of the experiment. This suggests

that contributions across consecutive rounds are unlikely to be

independent. Combining contributions over many rounds there-

fore artificially amplifies the differences, leading to the appearance

of statistical significance where none may exist. In fact, as Table 5

in [27] itself makes clear, the final (and also average) difference

between topologies is roughly the same as the initial difference

(period 1–20); thus essentially all of the difference can be explained

in term of initial contributions, which are by construction

unrelated to the network topology. Second, the significance of

the NetworkClustering and NetworkLength coefficients in the

PD1 logit model (Table 10 in [27]) is marginal and disappeared

when other factors, such as the % cooperation in the previous

experiment (PD2) or dummy variables for the session (PD3) were

included. If simply controlling for the session in which a game was

conducted eliminates the significance of a coefficient, then it would

seem that any claims to significance ought to be regarded with

caution. On closer inspection, therefore, Cassar’s results are

Table 3. The breakdown of realizations per topology is given.

Paired Small Random

Cliques Cliques Cycle World Regular

All Human 4 3 8 4 4

Cooperative Seeds, Cover 3 2 4 2 2

Defecting Seeds, Cover 2 2 9 2 2

Cooperative Seeds,
Concentrated

N/A 4 5 5 6

The larger number of cycle topology experiments was due to the presence of
two outliers: experiments in which uncharacteristically high contributions were
registered. The effect of these outliers was to greatly increase the size of the
error bars for that topology, thus more realizations were required.
doi:10.1371/journal.pone.0016836.t003

Figure 4. Average contributions per round for each of the five network topologies shown in Figure 2. (A) Raw contributions. Error bars
indicate 95% confidence intervals.(B) Contribution curves shifted vertically so that they all start at the same point.
doi:10.1371/journal.pone.0016836.g004
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probably consistent with ours—that, is differences in contribution

levels between network structures are not significant.

Although Cassar’s results on how network structure impacts

contribution levels in public goods games may be ambiguous, they

do support our claim that the theoretical arguments above

[16,21–23] have led researchers to suspect that network structure

should matter. Specifically, intuition and simulation results suggest

that when conditional cooperators are allowed to interact

preferentially, i.e. in networks that exhibit high clustering, they

ought to reinforce each other, thereby sustaining higher

contributions for longer than in randomly connected networks

which have low clustering. Likewise, the contagion argument

suggests that clusters of high contributors ought to exert a positive

impact on the contributions of neighbors who are not in the

cluster, thereby promoting the spread of cooperation. If in fact,

network structure does not impact contributions, then one or both

of these two arguments must be invalid. To differentiate between

these possible explanations, we conducted two additional series of

experiments, which we describe in turn.

Testing for Conditional Cooperation
In the first series, comprising 30 experiments over 4 weeks, we

followed the same design as above, but with the key difference that

in each experiment four nodes were selected, one from each group

(indicated with a filled circle in Figure 2), and their contributions

were all artificially fixed either at 10 (the ‘‘cooperative’’ condition)

or 0 (the ‘‘defection’’ condition) for all rounds. We emphasize, that

these players were played by a computer, not by subsidizing real

players, where we did not explicitly disclose to subjects that their

neighbors might not be played by other human players.

Behavioral scientists of different traditions have varying attitudes

with respect deceptive manipulations: experimental economists

view them as unacceptable in principle, whereas psychologists

practice them when the research benefit outweighs any harm

caused to subjects. In our case, subjects were exposed to minimal

harm; thus we viewed the benefit of being able to establish clear

causal relations as justifying the manipulation. Potentially the issue

could have been avoided by including a statement in the

instructions to participants to the effect that ‘‘from time to time

certain positions may be played by automated agents rather than

humans.’’ However, we do not believe that the inclusion of such a

statement would have affected the results.

Following the above procedure, we were able test the

conditional cooperator hypothesis by directly measuring the

positive/negative influence of unconditional cooperators/defectors

on their immediate neighbors. We note that with the exception of

the random regular network, the seed players were arranged in

order to cover the network, meaning that each human player was

adjacent to precisely one seed player; in addition, each human

player was connected via two-step paths to all four seed players (in

the random regular case, a perfect cover arrangement did not exist

for the selected network; thus a close approximation was used

instead). An advantage of this arrangement, which we call the

‘‘cover’’ condition, is that all human players were subjected to the

same experimentally manipulated influence, both direct and

indirect.

Figure 7A shows that in all topologies, the presence of

cooperating seeds stimulated consistently higher aggregate contri-

butions from the remaining 20 players, while the presence of

defecting seeds had the opposite effect. Possessing a high (or low)

contributing neighbor therefore did increase (or decrease) the

average contribution levels; thus our subjects were indeed

behaving as conditional cooperators. Nevertheless, Figure 7B

shows that the effect of the seed players was not consistently bigger

in the graphs with the highest clustering. For example the effect of

the seed nodes in the Cliques network, which had the maximum

number of triangles incident on each node, was very similar to the

effect of the seeds nodes in the Random Regular network, which

had fewer than 1/10th as many triangles. This result implies that

two nodes that form a triangle with a cooperating (or defecting)

seed do not have an appreciably larger (or smaller) average

contribution level then two disconnected nodes with a cooperating

(or defecting) seed neighbor in common. Mutual reinforcement of

the contributions among the neighbors of a seed node is largely

absent, whether or not there is an edge between the neighbors.

Is there in fact any effect of increasing the number of triangles in

the network? To answer this question, Figure 8 compares the

difference in contributions of pairs of players that (a) are adjacent

versus not adjacent, and (b) share a positive or negative seed as a

neighbor versus no neighboring seed. Comparing the left column

to the right column shows that adding an edge to a disconnected

pair of edges increased the similarity between their contribution

levels. It also shows that completing a triangle between two human

players and a seed node also increased the similarity of the

contributions of the humans. Thus, increasing the number of

triangles in the network did indeed increase coordination within

the neighborhoods of the seeds. We emphasize, however, that the

coordinating influence of triangles cuts both ways by increasing

contributions in the presence of cooperating neighbors and

diminishing them in the presence of defecting neighbors; thus

increased coordination among triangles of players does not

correspond to increased contribution levels. Put another way,

players do cooperate conditionally, but the negative effects of

conditional cooperation counteract the positive effects such that

the net result is independent of local clustering.

Testing for Contagion
As noted above, another possible explanation for the lack of

impact of network topology on aggregate contributions is the

absence of contagion. That is, even if players do behave as

conditional cooperators, both with respect to the artificial seeds

and also the other neighbors of seeds, possibly these effects are not

strong enough to propagate beyond the immediate neighborhood

of a cooperation seed. Unfortunately, the above experiment allows

us to draw only limited conclusions regarding contagion. Since the

cover arrangement of seeds meant that all human players were

subjected to the same potential influence, both direct and indirect,

we did not experimentally manipulate the level of positive/

negative influence at different distances from human players.

To further test for the possibility of contagion, therefore, we

conducted a third series of 20 experiments over 2 weeks, in which

we kept the number of unconditionally cooperating seeds constant

at four per network (we did not introduce unconditional defectors

in these experiments), but concentrated them together into two

adjacent pairs (see Figure 9). This arrangement of seeds, which we

call the ‘‘concentrated’’ condition, therefore exposed some human

players to two unconditional cooperators as immediate neighbors,

while others were not exposed to any seeds directly, but were

connected indirectly to the seeds via a human intermediary. Since

the Cliques topology did not allow for this type of arrangement we

excluded it from these experiments. If positive contagion were

present in the network, we would expect to see nodes at distance

Figure 5. Fraction of groups with average contribution at least X , where 1ƒXƒ10.
doi:10.1371/journal.pone.0016836.g005
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two from the seeds increase their contributions relative to the all-

human (i.e. no seeds) condition. Moreover, the premise of

conditional cooperation would also lead us to expect that

immediate neighbors would increase their contributions relative

to the cover-seed condition.

Surprisingly, our results contradicted both these expectations.

First we found that nodes who were directly connected to two

cooperating seed nodes contributed more than players who were

not attached to any seed nodes, but less than players who were

attached to only one seed node (both computed from previous

experiments) as shown in Figure 10A. These results suggest that

although many players do respond positively to the introduction of

unconditional cooperators, the presence of too many uncondi-

tional cooperators invites free riding. Conditional cooperation,

that is, appears to be subject to at least two distinct conditions that

are in tension with one another: on the one hand, individuals do

not want to contribute unless others are contributing; but on the

other hand, if others contribute too much, the temptation to free

ride overrides their inclination to reciprocate. In spite of this result,

it is nevertheless the case that immediate neighbors of cooperating

seeds did on average contribute more than in the no-seed

condition. Assuming that the remaining players (i.e. at distance

two from the seeds) also cooperate conditionally, one would expect

that the increased contributions associated with the neighbors of a

fully contributing seed would generate contagious effects leading to

increased contributions among these nodes as well. Yet these

effects were not apparent. Quite to the contrary, in fact, Figure 10B

shows that the two-step neighbors of the cooperating seeds

contributed slightly less than the nodes in the corresponding

network positions contributed in the all-human experiments.

Testing for Learning Effects. To check that this

unexpected reduction in contributions did not reflect a

systematic overall shift from higher to lower contributions over

the course of dozens of experiments involving our panel, we ran an

additional series of all-human experiments, finding that average

contributions had, if anything, increased slightly relative to the

earlier round of all-human experiments (see Figure 11A). We also

studied average contributions as a function of the number of

games played by individual subjects, finding that experienced

players who have played as many as 40 games did not contribute

on average, more or less than inexperienced players (see

Figure 11B). Moreover, we tested for selection effects by

comparing the complete history of average contribution levels of

those who chose to play many times to the overall subject pool and

did not find a significant difference. Thus we conclude that the

reduced contributions observed in the concentrated seed

experiments are not explainable either in terms of a systemic

over-time shift in player behavior, the presence of experienced

players contributing less, or a higher return rate of more

cooperative players. We also note that although experienced

players have been used in previous experiments [31], it is unusual

to allow subjects to play upwards of 30 times over a period of

months. Previously it has been unclear whether or not such players

would learn over time to play differently, thereby systematically

biasing the results. Figure 11 is therefore reassuring in that it shows

no evidence of such a systematic bias.

Comparison of Results with Fowler and Christakis

(2010). Finally, we note that our finding that positive

contagion does not occur in public goods games on networks

appears to contradict a recent claim by Fowler and Christakis [20]

mentioned earlier. The authors claim that cooperative cascades

take place on networks of individuals playing a linear public goods

game, and that evidence of contagion persists for up to three steps,

leading them to hypothesize a ‘‘three degrees of influence’’ rule.

We note, however, an important difference between the networks

studied by Fowler and Christakis and those that we have studied

here. Specifically, Fowler and Christakis reanalyzed data from

Fehr and Gachter [32] (the same results that we replicated in our

preliminary experiments described above) in which groups of n~4
players were randomly reassigned to new groups after each round.

Figure 6. Distributions of individual level contributions across topologies. The distributions vary only slightly as the topology is changed.
One realization of the Paired Cliques topology was an outlier; it had a higher then normal number of full contributors.
doi:10.1371/journal.pone.0016836.g006

Figure 7. Contributions for cover-seed experiment. (A) Average contribution per round for the cooperating and defecting conditions averaged
over all realizations and all topologies. (B) Overall average contribution for each topology under the cooperating, defecting and all human conditions.
The clustering coefficient for each network is listed in parenthesis. In both panels error bars indicate 95% confidence intervals.
doi:10.1371/journal.pone.0016836.g007

Cooperation in Networked Public Goods Experiments

PLoS ONE | www.plosone.org 11 March 2011 | Volume 6 | Issue 3 | e16836



Whereas in our networks, all individuals appear just once and play

with same set of neighbors each turn, in [20] each individual

appears r times (where r is the number of rounds of the

experiment) and plays with a different set of neighbors each

time. As a result, the measure of network distance in [20] does not

map precisely to the conventional meaning of network distance,

which is the meaning that we have adopted here, but rather refers

at least in part to the relation between an individual’s present and

past states. Although this unconventional definition of distance

makes the two sets of results difficult to compare, the main finding

in [20], that individuals who belonged to higher contributing

groups in round t{1 contributed, on average, more in round t,
seems consistent with our observation that initially high

contributions tend to persist over time. We also note, however,

that it was precisely to separate the effects of persistence from

‘‘true’’ contagion, in the sense that an effect due to a single

individual propagates to a remote individual along a series of

network ties, that we designed the concentrated seed experiment.

And as the results from that experiment make clear, neither

persistence nor even conditional cooperation (as demonstrated in

the cover seed design) are sufficient to generate contagion in this

sense. Given these results, we conclude that although the effects of

higher neighbor contributions may well persist for up to three

rounds, the most intuitive interpretation of the ‘‘three degrees of

influence’’ rule—namely that higher contributions spread from

individual to individual in a static network for up to three steps—is

not supported.

Discussion

Returning to our original motivation, theoretical arguments in

favor of an association between network structure and cooperation

invoke two related ideas: first, that individuals are conditional

cooperators, increasing their contributions in response to the

increased contributions of their neighbors; and second, that

positive effects of conditional cooperation should propagate

through the network via a process of contagion. In this paper,

we have tested the effects of network topology on contribution

levels in a standard public goods game, finding no significant

effects. In addition, we conducted two separate rounds of

experiments—one to test for the presence of conditional

cooperation, and the other to test for the possibility of positive

contagion. Although we do find strong evidence of conditional

cooperation, we do not find evidence of positive contagion in the

standard sense of multi-step propagation along a sequence of ties

in a static network.

Our explanation for these results is that the theoretical

arguments cited above emphasize the positive aspect of conditional

cooperation, yet conditional cooperation implies not only that

players increase their contributions in response to cooperative

Figure 8. The average pair-wise difference of the human contributions in each of the subgraphs pictured.
doi:10.1371/journal.pone.0016836.g008
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neighbors, but also that they decrease their contributions in

response to defecting neighbors. Although it is the case that highly

clustered networks offer more opportunities for positive effects to

reinforce each other than random networks, they also offer more

opportunities for negative effects to reinforce each other as well.

By contrast, in random graphs where there is very little clustering,

neither cooperation nor defection get reinforced and seeds act as

influence blockers preventing either positive or negative influence

from propagating among neighbors.

As stated in the introduction, in the case of coordination games,

if node A chooses an action that results in a lack of coordination

with neighbor B, then B has a clear incentive to change its action.

In turn, if this results in a lack of coordination with C which is a

neighbor of B and not A, this can result in contagion. In a

cooperation setting, B need not change its action in response to A

because the incentives do not enforce such a tight coupling of

neighbors actions. This leads to an interesting open question—

under what theoretical conditions should one expect to see

contagion over networks with fixed neighbors? In demonstrating

that not all dynamic games on networks exhibit contagion we hope

that our findings will provoke new theoretical hypotheses along

these lines, as well as new experiments to test them.

Moreover, even in the absence of contagion, our observations

also show how an outside entity might stimulate cooperation in a

network by subsidizing targeted individuals to cooperate or by

inserting unconditionally cooperative players into the network. We

emphasize that unlike other known strategies for stimulating

cooperation, such as allowing punishment [5] or reward [8], or

Figure 9. Cooperating seeds in the concentrated seed experiments. The blue, filled-in nodes were used as seed nodes in the concentrated
arrangement (see text for details). Oval shaped nodes that are outlined in blue are directly connected to at least one seed node. Triangular nodes are
two hops from at least one seed node. In each topology two of the seeds in the concentrated arrangement were also seeds in the cover arrangement.
doi:10.1371/journal.pone.0016836.g009

Cooperation in Networked Public Goods Experiments

PLoS ONE | www.plosone.org 13 March 2011 | Volume 6 | Issue 3 | e16836



introducing sanctioning institutions [7], this mechanism does not

change the game by giving players another action, but instead

exploits the network on which the game is being played. As Table 1

shows, in the cover experiments the positive intervention was cost-

effective in four out the five topologies. More specifically, the

expected cost of subsidizing players, i.e. the additional contribu-

tions of the four seeds over their average contribution in the no-

intervention case, was less than the total marginal increase in

contributions from the remaining twenty individuals. These results

therefore provide empirical support for earlier theoretical work

[47] which proposed that seeding or inducing cooperation among

focal actors may generate positive effects on the network. Our

work also suggests where to place the seed nodes for maximum

effect. The absence of positive contagion—along with the negative

marginal effect on neighbors of multiple unconditionally cooper-

ating seeds—implies that the impact of cooperative seeds is

maximized by spreading them widely across many groups, thereby

maximizing the total number of human players exposed directly to

seeds.

In concluding, we note that in addition to their substantive

relevance, the experiments discussed here also demonstrate the

possibility of web-based behavioral experiments involving the

simultaneous presence of many players (see also [44]). Although

experiments of this nature and scale have been conducted in

physical labs [24–27], web-based ‘‘virtual labs’’ exhibit two

important advantages over their physical counterparts: first,

experiments can be run faster and more efficiently (e.g. we ran

113 experiments costing roughly $1.50 per subject per experi-

ment); and second, although our panel size restricted the current

study to networks of n~24, in principle this limit can be raised

arbitrarily, allowing for the study of much larger networked

systems. The speed, efficiency, and scalability of web-based

experimentation should allow researchers to extend the current

study in numerous directions: how would contributions be affected

Figure 10. Contributions for concentrated-seed experiment. (A) The average contribution of human players neighboring 0, 1 or 2
cooperating seed nodes. (B) The average contribution of the human players 2 hops from 2 seed nodes compared to the average contribution of the
corresponding nodes in the all human experiments. In both panels error bars indicate 95% confidence intervals.
doi:10.1371/journal.pone.0016836.g010

Figure 11. Checking for the effects of learning. (A) Comparison on the Cycle topology with all human players between experiments conducted
early in our study and at the end of our study. (B) Average contribution levels as a function of how many times an individual has played.
doi:10.1371/journal.pone.0016836.g011
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by giving players more information about the network, or

providing players with feedback, or allowing players to rewire

their network ties? And how do all these effects scale with the size

and density of the network? In addressing these questions, and

others, we anticipate that web-based platforms like that provided

by AMT will become an increasingly valuable tool for under-

standing the dynamics of human cooperation, and for experimen-

tal social science in general.

Materials and Methods

This section provides additional details on the Investment

Game experiment, conducted on Amazon’s Mechanical Turk

(AMT). All participants were recruited on AMT by posting a

HIT for the experiment, entitled ‘‘The Investment Game’’, a

neutral title that was accurate without disclosing the purpose of

the experiment. Before launching the experiment, we submitted

to and complied with Yahoo!’s internal human subjects review

process. A letter certifying the approval of our experiment has

been filed with PLoS One. All data collected in the experiment

could be associated only with participants’ Amazon Turker ID,

not with any personally-identifiable information; thus all players

remained anonymous.

Ethics Statement
Before participating, all subjects were required to read and

acknowledged the following terms of use agreement (equivalent to

an Informed Consent Statement).

The Investment Game Terms of Use. You will be paid

$0.50 as a base rate plus more depending on your ability to play

the game If you have any questions at any time, please contact:

Siddharth Suri at Yahoo! Research, 111 W. 40th St., New York,

NY, or by email at suri@yahoo-inc.com By clicking the ‘‘I Agree’’

button below you affirm that you have read and understood the

following Yahoo! Research Investment Game Terms of Use and

Investment Game description and agree to comply with and be

bound by its terms. YAHOO! RESEARCH INVESTMENT

GAME TERMS AND CONDITIONS

1. Welcome to the Yahoo! Research Investment Game (‘‘Proj-

ect’’). This Project is a game of skill, not a game of chance. By

participating in the Project you are entering into a legally

binding agreement with Yahoo!, Inc., (‘‘Yahoo!, ‘‘we,’’ ‘‘our,’’

and ‘‘us’’). This agreement is comprised solely of these Terms

and Conditions (‘‘Agreement’’ or ‘‘Terms’’), including anything

explicitly incorporated by reference. If you do not agree to

these Terms, please do not participate.

2. The Project is offered to individuals registered as ‘‘workers’’

with Amazon, Inc.’s ‘‘Mechanical Turk’’ service (http://www.

mturk.com/mturk/welcome).

3. Your participation in the Project as a worker is governed by

Amazon, Inc.’s Mechanical Turk’s conditions of use (http://

www.mturk.com/mturk/conditionsofuse) in addition to the

following Yahoo! terms:

(a) Description of Project. The Yahoo! Research Investment

Game is intended to collect data on how well people play this

game.

(b) Work Product/Ownership. You agree to perform the tasks

provided in the Project and to be compensated for the

completion of each task as set forth in C below. You also

agree that Yahoo!, and not You, shall own all work product

from your participation in the Project.

(c) Payment. You will be paid $0.50 plus a bonus depending on

your skill level for the game. All payments will be made to

You through the Mechanical Turk service as detailed in the

Mechanical Turk conditions of use.

(d) Relationship of the Parties. The Parties are independent

contractors. Nothing in these Terms shall be construed as

creating any agency, partnership, or other form of joint

enterprise between the Parties and neither Party may create

any obligations or responsibilities on behalf of the other

Party.

(e) Termination.

i. By You. You may terminate Your participation in the Project

by clicking the Return HIT button at any time.

ii. By Yahoo!. We may suspend or terminate the Project at any

time, with or without notice, for any reason or no reason. In

the event of such termination, Yahoo! will pay You for all

tasks fully completed by You prior to termination.

(f) Contact. If you have any questions at any time, please

contact Siddharth Suri at Yahoo! Research, 111 W. 40th St.,

New York, NY, or by email at suri@yahoo-inc.com

(g) Confidentiality. You will not disclose or use Yahoo!’s

Confidential Information. ‘‘Confidential Information’’

means any information disclosed or made available to You

by Yahoo!, directly or indirectly, whether in writing, orally

or visually, other than information that: (a) is or becomes

publicly known and generally available other than through

Your action or inaction or (b) was already in Your possession

(as documented by written records) without confidentiality

restrictions before you received it from Yahoo!. Confidential

Information includes, but is not limited to, all information

contained within the Project, these Terms, the Policies, and

any other technical or programming information Yahoo!

discloses or makes available to you.

(h) Indemnity. You will defend, indemnify and hold harmless

Yahoo! Inc., and its affiliated companies, (‘‘Indemnified

Parties’’) from and against any and all claims, liabilities,

losses, costs, and expenses, including reasonable attorneys’

fees, which the Indemnified Parties suffer as a result of claims

that arise from or relate to your activities under or in

connection with this Agreement, including but not limited to

claims that allege or arise from: (i) a violation a third party’s

right of privacy, or infringement of a third party’s copyright,

patent, trade secret, trademark, or other intellectual property

rights, (ii) any breach of your obligations, covenants,

warranties or representations as set forth in this Agreement,

including any breach of any applicable policies, (iii) any

violation of applicable laws, rules, and regulations by you,

including, without limitation, privacy laws, and (iv) any

breach of this Agreement. You shall not enter into any

settlement that affects any Indemnified Party’s rights or

interest, admit to any fault or liability on behalf of any

Indemnified Party, or incur any financial obligation on

behalf of any Indemnified Party without that Indemnified

Party’s prior written approval.

(i) No Warranty. YOU EXPRESSLY AGREE TO THE

FOLLOWING WARRANTY DISCLAIMER. YOU ARE

PARTICIPATING IN THE PROJECT AT YOUR OWN

RISK. YOU REPRESENT AND WARRANT THAT BY

PARTICIPATING IN THIS PROJECT THAT YOU

WILL COMPLY WITH ALL APPLICABLE LAWS. THE

PROJECT AND EVERYTHING PROVIDED UNDER
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THIS AGREEMENT IS PROVIDED ‘‘AS IS.’’ YAHOO!

DOES NOT WARRANT THAT THE PROJECT WILL

OPERATE UNINTERRUPTED OR ERROR-FREE.

YAHOO AND ITS LICENSORS ARE NOT RESPON-

SIBLE FOR ANY CONTENT PROVIDED HEREUN-

DER. TO THE EXTENT ALLOWED BY LAW, YA-

HOO! AND ITS LICENSORS MAKE NO WARRANTY

OF ANY KIND, WHETHER EXPRESS, IMPLIED,

STATUTORY OR OTHERWISE, INCLUDING WITH-

OUT LIMITATION WARRANTIES OF MERCHANT-

ABILITY, FITNESS FOR A PARTICULAR PURPOSE,

AND NONINFRINGEMENT. YAHOO! MAKES NO

WARRANTY AND NO REPRESENTATION ABOUT

THE AMOUNT OF MONEY YOU WILL EARN

THROUGH THE PROGRAM. THIS WARRANTY

DISCLAIMER SHALL APPLY TO THE MAXIMUM

EXTENT PERMITTED BY LAW.

(j) Limitation of Liability. YOU EXPRESSLY AGREE TO

THE FOLLOWING LIMITATION OF LIABILITY.

YAHOO! WILL NOT BE LIABLE FOR ANY LOST

PROFITS, COSTS OF PROCUREMENT OF SUBSTI-

TUTE GOODS OR SERVICES, OR FOR ANY OTHER

INDIRECT, SPECIAL, INCIDENTAL, EXEMPLARY,

PUNITIVE OR CONSEQUENTIAL DAMAGES ARIS-

ING OUT OF OR IN CONNECTION WITH THIS

AGREEMENT, HOWEVER CAUSED, AND UNDER

WHATEVER CAUSE OF ACTION OR THEORY OF

LIABILITY BROUGHT, EVEN IF YAHOO! HAS BEEN

ADVISED OF THE POSSIBILITY OF SUCH DAM-

AGES. YAHOO! WILL NOT BE LIABLE FOR DIRECT

DAMAGES IN EXCESS OF ANY AMOUNT THAT

YAHOO! HAS ALREADY PAID TO YOU FOR YOUR

PARTICIPATION IN THE PROJECT. IF YOU ARE

DISSATISFIED WITH ANY ASPECT OF THE PROJ-

ECT, OR WITH ANY OF THESE TERMS OF USE,

YOUR SOLE AND EXCLUSIVE REMEDY IS TO

DISCONTINUE YOUR PARTICIPATION IN THE

PROJECT. This limitation of liability shall apply to the

maximum extent permitted by law.

(k) No Public Statements. You may not issue any press release

or other public statement regarding the Agreement, Yahoo!,

and/or Yahoo! Inc.s affiliates, or partners or advertisers

without the prior written consent of an authorized person at

Yahoo!.

I AGREE

Participant Instructions
After accepting the HIT and agreeing to the terms of use,

participants were provided with the following instructions (adapted

from [32]).

Welcome to the Investment Game! Because the amount of

money you can earn depends on your decisions in the game, it is

important that you read these instructions with care. At the end of

the instructions there is a quiz to ensure that you understand the

instructions. You will not be paid for the HIT unless you correctly

answer these questions.

Overview. In the Investment Game you will be placed in a

network with 23 other Turkers; however, you will only ‘‘see’’ a

subset of the total network-those players to whom you are

connected directly. These players will be called your ‘‘neighbors’’.

Both the total network and your neighbors will remain fixed

throughout the game.

Once the network is populated with Turkers, the game will

proceed over the course of 10 ‘‘rounds’’. During each round you

and your neighbors (i.e. the Turkers directly connected to you in

the network) will choose how much to contribute to an abstract

project. Then this project generates a ‘‘payoff’’ that will then be

split equally among you and those who are directly connected to

you. Your total payoff for the game is the sum of your payoffs from

each round.

During the game we will not report your earnings in terms of

dollars and cents but rather in terms of points. At the end of the

game the total amount of points you have earned will be converted

to dollars at the rate of 1 point = 2 cents. The amount you earn

from the game will be the bonus for this HIT. You will earn the

base rate of 50 cents for this HIT by correctly answering the quiz

at the end of these instructions.

How the game works

1. In each round we give you an ‘‘endowment’’ of 10 points.

2. You decide how many points you want to contribute to the

project by typing a number between 0 and 10 in the input field

and then clicking the submit button. Please note that by

deciding how many points to contribute to the project, you also

decide how many points you keep for your self, this is (10 - your

contribution) points. Also note that once you have submitted

your contribution you cannot go back and change it.

3. In the first two rounds you have 45 seconds to make you

contribution. In the remaining rounds you have 30 seconds. If

you do not make a contribution before the end of a round, the

system will make one for you and you will not earn any points

for that round.

4. Your income from each round consists of two parts:

(a) the points which you have kept for yourself (‘‘income from

points kept’’).

(b) ‘‘income from the project’’, which is 0.4 x the total

contribution that you and your neighbors made to the

project.

Your income in points from a round is therefore: Income

from points kept + Income from the project = (10 - your

contribution to the project) + 0.4*(total contributions you

and your neighbors made to the project)

5. The income of each person in the network (including your

neighbors) is calculated in the same way.

Four Examples of Payoffs

1. Suppose you have four (4) neighbors, and each of you

contributes the maximum allowable of 10 points. The sum of

the contributions you and your neighbors (those who are

directly connected to you) is 50 points, and so each member of

the group receives an income from the project of: 0.4*50 = 20

points. Meanwhile your income from points kept = 0 (because

you did not keep any), and so your total income = 0+20 = 20

points.

2. Alternatively, suppose that each player contributes two (2)

points. Then the total contribution to the project is 10 points,

and each member of the group receives an income from the

project of: 0.4*10 = 4 points. Because you contributed two of

these points then your income from points kept is eight (8), and

your total income = 8+4 = 12 points.

3. Next, say you contribute two (2) points and all your neighbors

contribute ten (10) points, the total contribution is 42 points,

and the income that each player receives from the project is

0.4*42 = 16.8 points. Because you contributed two (2) points,
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your kept income is eight (8), and your total income =

8+16.8 = 24.8 points.

4. Finally, say you contribute ten (10) points, and all your

neighbors contribute two (2) points, the total contribution is 18

points, and the income that each player receives from the

project is 0.4*18 = 7.2 points. Because you contributed ten (10)

points, your kept income is zero (0) points and your total

income = 0+7.2 = 7.2 points.

Important Points to Note

1. For each point that you decide to keep for yourself, your

income for that round will increase by one point.

2. For each point you contribute to the project, the total

contribution to the project will rise by one point, and your

income from the project will rise by 0.4*1 = 0.4 points.

3. For each point you contribute to the project, the income of

your neighbors will rise by 0.4 points each. For example, if you

have 4 neighbors then a one point contribution by you will

raise the total income of you and your neighbors by 5*0.4 = 2.0

points.

4. Finally, say you contribute ten (10) points, and all your

neighbors contribute two (2) points, the total contribution is 18

points, and the income that each player receives from the

project is 0.4*18=7.2 points. Because you contributed ten (10)

points, your kept income is zero (0) points and your total

income = 0+7.2=7.2 points.

Participant Quiz
Finally, participants were required to pass a quiz, thus

demonstrating that they had understood the instructions.
Quiz. To make sure you have read and understood the

instructions, you must answer the following questions correctly. If

you answer any questions incorrectly, you will get a second

chance. If you answer a question incorrectly twice, you will not be

allowed to play the game and will not receive payment for the

HIT. The answers to all of the questions below are in terms of

points. Please accept the HIT before beginning to fill out the form.

In questions 1–4, assume you have 5 neighbors and you and

your neighbors have an endowment of 10 points each.

1. If nobody (including yourself) contributes any points to the

project what would your total income be?

2. If everyone (including yourself) contributes all 10 points to the

project, would your total income be?

3. Say together your neighbors contribute a total of 25 points to

the project.

(a) If you do not contribute any points to the project what would

your total income be?

(b) If you contribute an additional 5 points to the project what

would your total income be?

4. Say you contribute 8 points to the project.

(a) What would be your income if your neighbors contributed a

total of 12 points to the project?

(b) What would be your income if your neighbors contributed a

total of 32 points to the project?
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