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Time-Critical Social Mobilization
Galen Pickard,1,2* Wei Pan,1* Iyad Rahwan,1,3* Manuel Cebrian,1* Riley Crane,1

Anmol Madan,1 Alex Pentland1†

The World Wide Web is commonly seen as a platform that can harness the collective abilities of large
numbers of people to accomplish tasks with unprecedented speed, accuracy, and scale. To explore the
Web’s ability for social mobilization, the Defense Advanced Research Projects Agency (DARPA) held the
DARPA Network Challenge, in which competing teams were asked to locate 10 red weather balloons
placed at locations around the continental United States. Using a recursive incentive mechanism that both
spread information about the task and incentivized individuals to act, our team was able to find all 10
balloons in less than 9 hours, thus winning the Challenge. We analyzed the theoretical and practical
properties of this mechanism and compared it with other approaches.

Incrowdsourcing, an interested party provides
incentives for large groups of people to con-
tribute to the completion of a task (1, 2). The

nature of the tasks and the incentives vary sub-
stantially, ranging from monetary rewards, to en-
tertainment, to social recognition (3–7).

A particularly challenging class of crowd-
sourcing problems requires not only the recruit-
ment of a very large number of participants but
also extremely fast execution. Tasks that require
this kind of time-critical social mobilization in-
clude search-and-rescue operations, hunting down
outlaws on the run, reacting to health threats that

need instant attention, and rallying supporters
of a political cause.

To mobilize society, one may turn to mass me-
dia. However, the ability to use mass media can
be inhibited for many reasons, such as telecom-
munications infrastructure breakdown. In such
cases, one must resort to distributed modes of com-
munication for information diffusion. For exam-
ple, in the aftermath of Hurricane Katrina amateur
radio volunteers helped relay 911 traffic for emer-
gency dispatch services in areas with severe com-
munication infrastructure damage (8). At other
times, the nature of the task itself necessitates so-
cially driven diffusion because it requires tight in-
volvement that can only be generated socially.

Another common characteristic of these so-
cial mobilization problems is the presence of
some sort of search process. For example, search
may be conducted by members of the mobilized
community for survivors after a natural disaster.
Another kind of search attempts to identify indi-

viduals within the social network itself, such as
finding a medical specialist to assist with a chal-
lenging injury.

There is growing literature on search in social
networks. It has long been established that so-
cial networks are very effective at finding target
individuals through short paths (9), and various
explanations of this phenomenon have been giv-
en (10–13). However, the success of search in
social mobilization requires individuals to be mo-
tivated to actually conduct the search and par-
ticipate in the information diffusion; indeed, the
majority of chains observed empirically terminate
prematurely. Providing appropriate incentives is
a key challenge in social mobilization (14, 15).

Recognizing the difficulty of time-critical so-
cial mobilization, theDefenseAdvancedResearch
ProjectsAgency (DARPA) announced theDARPA
NetworkChallenge inOctober 2009. Through this
challenge,DARPAaimed to “explore the roles the
Internet and social networking play in the timely
communication, wide-area team-building, and ur-
gent mobilization required to solve broad-scope,
time-critical problems” (16). The challenge was
to provide coordinates of 10 red weather balloons
placed at different locations in the continental
United States. According to DARPA, “a senior ana-
lyst at the National Geospatial-Intelligence Agen-
cy characterized the problem as impossible” by
conventional intelligence-gathering methods (17).

We, as the Massachusetts Institute of Tech-
nology (MIT) team, won the challenge (18),
completing the task in 8 hours and 52 min. In
~36 hours before the beginning of the challenge,
we were able to recruit almost 4400 individuals
through a recursive incentivemechanism.Between
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50 and 100 other teams participated in the
DARPA Network Challenge (17). Although no
other team located the 10 balloons, The Georgia
Institute of Technology (GaTech) team placed
second by locating nine balloons within 9 hours.
Two more teams found eight balloons (DudeItsa-
Balloon and Rodriguez-Chang), and five other
teams found seven balloons. Variations in the
strategies of the competing teams reflected dif-
ferences in how social media can be tailored in
order to fit a given task (19).

The MIT team’s strategy for public collabo-
ration was to use the $40,000 prize money that
would be awarded to the winning team as a
financial incentive structure rewarding not only
the people who correctly located balloons but
also those connecting the finder to us. Should we
win, we would allocate $4000 in prize money
to each of the 10 balloons. We promised $2000
per balloon to the first person to send in the cor-
rect balloon coordinates. We promised $1000
to the person who invited that balloon finder
onto the team, $500 to whoever invited the in-
viter, $250 to whoever invited that person, and
so on. The underlying structure of the “recursive
incentive” was that whenever a person received
prize money for any reason, the person who in-
vited them would also receive money equal to
half that awarded to their invitee (fig. S1).

Our approach (“mechanism”) was based on
the idea that achieving large-scale mobilization

requires incentives at the individual level to ex-
ecute the task as well as to be actively involved in
the further recruitment of other individuals through
their social networks. A formal model of the ap-
proach is in the supporting online material (SOM)
text. In this diffusion-based task environment, agents
become aware of tasks as a result of either (i)
being directly informed by the mechanism through
advertising or (ii) being informed through recruit-
ment by an acquaintance agent (20).

Our approach can be seen as a variant of the
Query Incentive Network model of Kleinberg
and Raghavan (21), in which a query propagates
over a network through a subcontracting pro-
cess, and the answer propagates back once it is
found (SOM text). The use of incentives to spread
information on a social network is also frequent
in referral marketing programs, which encour-
age existing customers to promote the product
among their peers—for example, by giving the
customer a coupon for each friend recruited (22).
A fundamental difference between these techniques
and ours is that our reward scales with the size of
the entire recruitment tree (because larger trees
are more likely to succeed), rather than depend-
ing solely on the immediate recruited friends.

Our mechanism’s performance compares
well with previous studies on search and re-
cruitment in social networks. One measure of
success is the size of the cascades, both in terms
of number of nodes, as well as depth. In a study

of the spread of online newsletter subscriptions
(23), in which individuals were rewarded for rec-
ommending the newsletter to their friends, the
7188 cascades varied in size between 2 and 146
nodes, with a maximum depth of eight steps,
over a time span of 3 months. In our data, if we
ignore the MIT root node there were 845 trees
recruited within 3 days. Examples of these trees
are shown in fig. S5. The largest tree contained
602 nodes, and the deepest tree was 14 levels deep.
The distribution of tree/cascade depth is shown in
Fig. 1A. Furthermore, a power-law distribution of
tree/cascade size with exponent −1.96, as predicted
by models of information avalanches on sparse
networks, is shown in Fig. 1B (24).

Previous empirical studies reported attrition
rates, which measure the percentage of nodes
that terminate the diffusion process. For exam-
ple, in a study of e-mail–based global search for
18 target persons, attrition rate varied between
60 and 68% in 17 out of the 18 searches performed
(15). In another study of the diffusion of online
recommendations, an attrition rate of 91.21%was
reported, despite providing incentives to partic-
ipants by offering them a chance in a lottery (24).
In the DARPA Network Challenge, if we ignore
isolated single nodes our mechanism achieved a
significantly lower attrition rate of 56%.

Another measure of performance for social
mobilization processes is the branching factor
(also known as the reproductive number), which
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is the number of people recruited by each in-
dividual. Previous empirical studies reported
diverse, though mostly low, observations. In a
study of the spread of support for online peti-
tions, dissemination was very narrow, with >90%
of nodes having exactly one child (25), which
others have attributed to a selection bias, ob-
serving only large diffusions (26). In our data,
the average branching factor was 0.93 if we
exclude single-node trees (0.80 if we include
single-node trees). The branching factor follows
a power-law distribution, suggesting that certain
individuals played an important role in dissemi-
nation by recruiting a very large number of people
(Fig. 1C). Our data also compares very favorably
with the newsletter subscription experiment men-
tioned above, in which spreaders invited an av-
erage of 2.96 individuals but were only able to
cause 0.26 individuals to sign up on average (23).
More generally, our data indicates that the branch-

ing factor appears to be closer to the tipping point
(branching factor of 1), above which large cas-
cades ensue. However, the cascade was finite
because of the completion of the task.

The dynamics of recruitment over time are
shown in Fig. 2, A and B, highlighting two
bursts of day-time recruitment activities on Fri-
day and Saturday just before DARPA launched
the balloons into their locations. In contrast with
the newsletter subscription experiment (23), in
which diffusion experienced a continuous decay,
these bursts enabled our mechanism to amass a
large number of people quickly.

Moreover, in the newsletter subscription ex-
periment the dynamics of diffusion were slow,
which was attributed to a heterogeneous, non-
Poisson distribution of individuals’ response time.
We observed an exponential distribution of inter–
sign-up time (Fig. 2C) (27). This contrasts with
the empirically observed power-law distribution

of inter-response time in human activity (28, 29)
and information cascades (23).

In message-routing tasks, it has been argued
that the ability of individuals to find a target with
an approximately known location is largely at-
tributed to people’s ability to exploit geography
(11, 15). To investigate this, we plotted the prob-
abilistic density distribution of distances between
two parties in a successful recruitment (Fig. 3).
We compared this data with a best-fit model
that explains the distribution of friendship over
geographical distance in the popular LiveJournal
online community (Fig. 3) (30). Our data ex-
hibited higher likelihood of distant connections
compared with the model by Liben-Nowell et al.
(30). Furthermore, this was confirmed by applying
the Kolmogorov-Smirnov test, comparing our
data with random samples drawn from the model
(P < 10−100). This suggests that people may have
exerted greater effort in recruiting distant friends.
This might be due to an expectation that increas-
ing the geographic spread of their recruitment
sub-tree is likely to increase their expected reward.

Because the DARPA challenge was not de-
signed specifically as an experiment, the poten-
tial for comparisonwith the other teams is limited.
To provide a qualitative comparison of diffusion
between the MIT team and other teams, we ana-
lyzed data from the information network Twitter.
We obtained ~100 million tweets for the time
period from 10 November to 9 December. This
data set covers an estimated 20 to 30% of all
public tweets for that period (31). Initially, we
filtered out all tweets except those containing
the string “balloon” in a case-insensitive manner.
We analyzed five teams in the top 10 final stand-
ings with a Twitter presence:MIT, GaTech, Hotz,
Geocatcher, and Deci/Nena, representing differ-
ent strategy categories. We then kept track of the
number of tweets that included either of the fol-
lowing as tweet content about the team: team
name, team website, hashtag for the team, short
link for the team Web site, and team’s affiliation
name, including the abbreviation. The tweet counts
are shown in Fig. 4.

The GaTech team adopted an altruism-based
incentive method, by offering to donate all pro-
ceeds to the American Red Cross. The limited
number of tweets responding to their strategy
suggests that relying purely on altruistic propa-
gation is not sufficient to amass large social mo-
bilization. Because of their early start, mass media
coverage, and search engine optimization, they
ended up locating nine balloons with 1400 active
members, and ranked second in the final list (19).

Another class of strategies is those that cap-
italize on an existing community of interest to
which a team had direct access. We refer to this
as the community-based strategy. George Hotz
is a Twitter celebrity with more than 35,000 fol-
lowers, and his strategy was to use his fame on
Twitter to solicit help. He successfully created
a burst in Twitter on the day he announced his
participation in the competition, and ended up
finding eight balloons (four from his Twitter
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network, and four through trades with other
teams) (17). Similarly, Geocacher’s strategy was
based on the existing community of geocaching,
a sport based on using navigational techniques
to hide and seek objects. It also created a burst
by announcing its participation to the geocacher
community and located seven correct balloons.
DeciNena aimed at assembling a balloon-hunting
teamby posting their participation on every related
blog on the Internet to gain attention, but they failed
to achieve a wide-range response. DeciNena found
seven balloons at the end of the competition.

Although Hotz and Geocacher were able to
create a sudden response peak by efficiently pro-
pagating the news to an existing audience, this
response was very short-lived. On the other hand,
our strategy was able to sustain social response
for a longer period, stretching up until the end
of the competition. This happened despite not
having access to a large community of followers.
Instead, the MIT team started with only four peo-
ple; and after a couple of days, twitter response
achieved a number comparable with that of
Hotz, who started with 35,000 existing followers.
Another interesting observation is that after the
competition, when mass media came to report
the winning story of the MIT team the tweet
count actually decreased instead of increasing.
This suggests that the incentives provided by
the MIT strategy played a dominant role in gen-
erating Twitter response, rather than the “MIT
brand” and mass media effect (SOM text).

The recursive incentive mechanism has a
number of desirable properties. First, the recur-
sive incentive mechanism is never in deficit—
it never exceeds its budget (SOM text). After
being recruited by a friend, an individual has
no incentive to create his own root node by vis-
iting the Balloon Challenge Web page directly
(without using the link provided by the recruiter).
This follows from the fact that payment to the
person finding the balloon does not depend on
the length of the chain of recruiters leading to him.

However, the mechanism is not resistant to
false name attacks, which were originally iden-
tified in the context of Web-based auctions (32).
In this attack, which has been shown to plague
powerful economic mechanisms (32), an individ-
ual creates multiple false identities in order to gain
an unfair advantage. Having said that, our data
does not reveal any successful incidents of false-
name attacks. This may be due to the fact that
the mechanism did not operate for long enough
for people to identify this potential, and that ac-
tual payment requires social security numbers. In
practice, other measures could be put in place to
minimize or detect this kind of attack (33).

The mechanism’s success can be attributed
to its ability to provide incentives for individuals
to both reports on found balloon locations while
simultaneously participating in the dissemination
of information about the cause. When an in-
dividual finds a balloon, the individual can ei-
ther report the balloon to us, to other teams, or
attempt to find the other nine balloons and win

the DARPA prize directly. In practice, it is un-
likely for an unprepared individual to find other
balloons (and if they replicated our mechanism,
their delayed start would always leave them be-
hind). Proofs are in the SOM.

Our mechanism simultaneously provides in-
centives for participation and for recruiting more
individuals to the cause. This mechanism can be
applied in very different contexts, such as social
mobilization to fight world hunger, in games of
cooperation and prediction, and for marketing
campaigns.
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The Complex Folding Network of
Single Calmodulin Molecules
Johannes Stigler,1 Fabian Ziegler,1 Anja Gieseke,1 J. Christof M. Gebhardt,1* Matthias Rief1,2†

Direct observation of the detailed conformational fluctuations of a single protein molecule
en route to its folded state has so far been realized only in silico. We have used single-molecule
force spectroscopy to study the folding transitions of single calmodulin molecules. High-resolution
optical tweezers assays in combination with hidden Markov analysis reveal a complex network of
on- and off-pathway intermediates. Cooperative and anticooperative interactions across domain
boundaries can be observed directly. The folding network involves four intermediates. Two
off-pathway intermediates exhibit non-native interdomain interactions and compete with the
ultrafast productive folding pathway.

The energy landscape view provides a con-
ceptual framework for understanding pro-
tein folding (1, 2). However, the diversity

in size and structure of the proteome is far too
large to provide a single generic mechanism for
howproteins fold.Deciphering specificmechanisms
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1 Materials and Methods

We implemented the MIT mechanism by building a simple web platform (http://balloon.
media.mit.edu). Any user could sign up with an E-mail address to become our team
member and report a balloon on the web platform. During the registration and balloon
reporting process, we recorded the time-stamp and IP address for each user activity on
the platform. After registration, the user received a unique link in an E-mail from us,
and the user could refer others by asking their friends to sign up with the MIT team via
this link. The link allowed our system to record the referral relationships between users.
It was up to the users to decide how to share this unique link. Some users chose to e-mail
the link to their friends, but many others shared the link in online social media tools such
as Twitter and Facebook. We initialized the di↵usion process by sending the link to our
web platform to a few close friends of the team members and several online web blogs 2
days before the competition.

Our analysis in Figure 1 and Figure 2 is based on the sign-up time information and
referral chains collected from our web platform. We translated all user IP addresses into
their locations using a 3rd-party online database smart-ip.net. Based on this location
information, we were able to perform the analysis in Figure 3.
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All the raw data including time stamps collected by our platform during the DARPA
Challenge as well as the translated IP addresses are available as MySQL databases from
the authors.

The raw Twitter dataset was collected in a Stanford research project by Yang et

al.(31), and this project is unrelated to the DARPA Challenge. The Stanford researchers
monitored and recorded the public Twitter feed from June, 2009 to December, 2009, and
the crawled Twitter dataset contains 20-30% of all public tweets during their study period.
The dataset had been available to public until recently when Twitter requested Stanford
to withdraw from public access1. We used this Twitter dataset to scan for related tweets
with keywords described in the main text, and conducted the analysis in Figure 4.

Other teams mentioned in our main text used di↵erent strategies to di↵use their
involvement and to recruit their members: The GaTech team created their own website
http://www.ispyaredballoon.com, embedded links towards its website on Georgia Tech
and Georgia Tech Research Institute websites, and performed search engine optimization
to attract tra�c. They also received a National Public Radio “Here and Now” broadcast
interview four days before the challenge (17). George Hotz simply communicated his
participation on his Twitter feeds to his 50,000 followers one day before the challenge.
The Geocacher team sent E-mail alerts to all the members in the Geocacher community
(roughly several hundred thousand members) one and two days prior to the balloon launch
(17). They also set up a blog (http://www.10ballonies.com) to post their progress.
DeciNena posted their information (http://decinena.com) in the comment section of
every related DARPA Challenge blog post they could find online starting three days prior
to the balloon launch2.

2 Formal Definition for the MIT Strategy

The MIT team approach was based on the idea that achieving large-scale mobilization
towards a task requires di↵usion of information about the tasks through social networks, as
well as incentives for individuals to act, both towards the task and towards the recruitment
of other individuals.

We consider our approach to the DARPA Network Challenge to be an instance of a
more general class of mechanisms for distributed task execution. We define a di↵usion-

based task environment which consists of the following: N = {↵1, . . . ,↵n} is a set of
agents ; E ✓ N ⇥ N is a set of edges characterizing social relationships between agents;
 = { 1, . . . , m} is a set of tasks ; P : N ⇥  ! [0, 1] returns the success probability of
a given agent in executing a given task; B 2 R be the budget that can be spent by the
mechanism.

1See http://snap.stanford.edu/data/twitter7.html.
2We estimated their start time according to the information on their Facebook post: http://www.

facebook.com/pages/Team-DeciNena/192350616581.

2



In a di↵usion-based task environment, unlike in traditional task allocation mechanisms
(e.g. based on auctions), agents are not aware of the tasks a priori. Instead, they become

aware of tasks as a result of either 1) being directly informed by the mechanism through
advertising; or 2) being informed through recruitment by an acquaintance agent (20).

Another characteristic of di↵usion-based task environments is that, when a task is
completed, the mechanism is able to identify not only the agent who executed it, but also
the information pathway that led to that agent learning about the task. The pathway
leading to the successful completion of task  i is captured by the sequence S( i) =
ha1, . . . , ari of unique agents, where ar is the agent who completed the task, ar was
informed of the task by ar�1 and so on up to agent a1 who was initially informed of the
task by the mechanism. By slightly overloading notation, let |S( i)| denote the length
of the sequence (i.e. the number of agents in the chain), and let ↵j 2 S( i) denote that
agent ↵j appears in sequence S( i).

We can now define a class of mechanisms that operate in the above settings. A
di↵usion-based task execution mechanism specifies the following: I ✓ N is a set of initial
nodes to target (e.g. via advertising); ⇢i is the payment made to agent ↵i; such that the
following constraint is satisfied: c|I|+

P
↵i2N ⇢i  B.

In words, the mechanism makes two decisions. First, it decides which nodes to target
initially via advertising. Second, it decides on the payment (if any) to be made each
agent. The mechanism must do this within its budget B.

In the DARPA Network Challenge, each  i represents finding a balloon, and v( i) =
4, 000 for all  i 2  . Moreover, we assume that the ten tasks are all identical (namely
finding a balloon), and all task are indistinguishable, 8↵i 2 N, 8 k, l 2  we have
P (↵i, k) = P (↵i, l). That is, the success probability of a particular agent is the same
for all balloons.

We are now ready to define our mechanism, referred to as a recursive incentive mech-

anism. Given I initial targets, and assuming v( i) = B/| |, divide the budget B such
that each task  i 2  has budget Bi = B/| |. If agent j 2 N appears in position k in
sequence S( i), then j receives the following payment:

v( i)

2(|S( i)|�k+1)
(1)

Hence, the total payment received by agent j is the sum of payments for all sequences in
which j appears:

⇢j =
X

 i|j2S( i)

v( i)

2(|S( i)|�k+1)
(2)

The surplus is therefore: S = B �
P

↵j2N ⇢j. Figure S1 illustrates how this mechanism
works.
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completed!
$2,000

$1,000

$500 Charity gets $500completed!
$2,000

$1,000
$500

$250 Charity gets $250

(b) Recruitment tree with two paths (shown in thick lines) initi-
ated by ↵1 led to finding balloons.

Figure S1: Recursive incentive mechanism: (a) Suppose that in this network, agent ↵1 recruits
all of his neighbors, namely ↵2, ↵5 and ↵8. Suppose that ↵8 recruits ↵6, who finds balloon  1.
(b) We have a winning sequence S( 1) = h↵1,↵8,↵6i with |S( 1)| = 3. The finder receives
⇢8 = 4,000

2(3�3+1) = 2, 000. Since ↵8 recruited ↵6, then ⇢8 = 4,000
2(3�2+1) = 1, 000. From this sequence,

↵1 receives 4,000
2(3�1+1) = 500. Likewise, looking at the left recruitment path, we have a winning

sequence S( 2) = h↵1,↵2,↵3,↵4i with |S( 2)| = 4. The finder receives ⇢4 = 4,000
2(4�4+1) = 2, 000.

As above, we have ⇢3 = 4,000
2(4�3+1) = 1, 000 and ⇢2 = 4,000

2(4�2+1) = 500. From this sequence, ↵1

receives 4,000
2(4�1+1) = 250. Adding up its payments from the two sequences it initiated, ↵1 receives

a total payment of ⇢1 = 750. Assuming there are only two tasks, the surplus in this case is
S = (4, 000� 3, 500) + (4, 000� 3, 750) = 750.
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3 Formal Proofs

3.1 Mechanism Always within Budget

Proposition 1. The recursive incentive mechanism is never in deficit (i.e. never exceeds

its budget).

Proof. Recall that each sub-task  i is allocated an equal share of Bi = B/| | budget.
Hence, it su�ces to show that the payment for any arbitrary task  i is bounded by Bi.
Let S( i) = ha1, . . . , ari be the (finite) sequence leading to the successful completion of
 i. We need to show that the total payment made to all agents in sequence S( i) within
budget, that is, we need to show that:

rX

k=1

Bi

2(r�k+1)
 Bi or equivalently we need to show that

rX

k=1

1

2(r�k+1)
 1

We can easily see that:
Pr

k=1
1

2(r�k+1) =
Pr

k=1(
1
2)

(r�k+1) =
Pr

k=1
1
2 ⇥ (12)

(r�k)

Defining i = r � k, we can rewrite:

rX

k=1

0.5(½)(r�k) = 0.5(½)(r�1) + 0.5(½)(r�2) + . . . 0.5(½)(r�r)

= 0.5(½)(r�1) + 0.5(½)(r�2) + . . . 0.5(½)0

=
r�1X

i=0

0.5(½)i

This is a finite geometric series, with a well-known closed form:

r�1X

i=0

0.5(½)i = 0.5
1� (½)(r�1)+1

1� ½
= 1� (½)r =

2r � 1

2r
 1 (for r � 1)

We continue to discuss our theoretical analysis on the mechanism. When agent ↵i

becomes aware of a set of tasks { 1, ..., m}, it needs to select a (possibly empty) set of
neighbors T (↵i) ✓ {↵j 2 N : (↵i,↵j) 2 E} to recruit (i.e. to inform them about  ),
assuming the team will win the challenge. The di↵usion of information about the task
relies crucially on such recruitment choices among agents. One can perform this incentive
analysis under two di↵erent assumptions:
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3.2 Incentives With Uniform Independent Success Probability
Among All Population

We now discuss the properties our mechanism under the assumption that the proba-
bility of each person finding a balloon is an independent (and very small) constant,
8i, k, P (↵i, k) = ✏, such that n.✏  1, i.e. the sum of these probabilities over the
entire population (including those not recruited) is bounded by 1. In this case, it is
trivial to show that recruiting all of one’s peers is the best strategy. Without recruiting,
one achieves an expected reward of

P
i ✏

v( i)
2 . With recruiting, on the other hand, one’s

expected rewards is
P

i

�
✏v( i)

2 +
P

j ✏xj
v( i)
2j

�
, where xj is the number of individuals at

depth j of the recruiter’s tree. Clearly, this expected reward increases monotonically in
the number of directly recruited nodes.

3.3 Incentives With Uniform Success Probability Among Re-
cruited Individuals

We can also analyze incentives under the assumption that the probability of an individual
finding a balloon is uniformly distributed across the recruited individuals. Formally we
have:

Definition 1 (Uniformity). Each recruited individual is equally likely to accomplish task

 , and the probability of each individual accomplishing the task is
1
n , where n is the number

of all recruited individuals.

Intuitively, it means that a fixed-size group of recruited individuals is guaranteed to
find the balloon eventually, even if no other individuals are recruited. This assumption is
realistic if the set of recruited individuals is su�ciently large (e.g. thousands). We will
continue to show that, under fairly broad assumptions on the structure of the society, it
is also in the best interest of each individual to recruit all their friends. In particular, here
we show that if no individual controls n/3 of the population (i.e. is able to prevent them
from learning about the task), then the strategy profile in which all individuals recruit all
their friends is a Nash equilibrium. In the following results, we consider the situation that
there is only one task  that is being di↵used in the social network with a total budget
of 1.

3.3.1 All-or-None Recruitment on Fixed-Forest Social Networks

We consider the case in which the social network takes the form of a forest of rooted trees,
and the roots of these trees form the set of initially-recruited nodes I.

Given this forest F , which contains a total of n nodes, each node chooses whether
or not to recruit all of its children. This induces a “recruited subforest” F 0 of size n0,
consisting of all nodes which can trace a path of recruitment to a root node of F .
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Figure S2: Nodes R1, b1, and a2 choose to recruit; the rest not. The recruited subforest
F 0 is shown in red. Note that a2’s choice to recruit is rendered moot by R2’s choice not
to recruit.

For each node in the recruited subforest, this results in an expected payment based
solely on the shape of its descendant recruited subtree. For each node, we can characterize
this shape with an ordered tuple X = hx1, x2, x3, . . . 0i, representing the number of chil-
dren, grandchildren, great-grandchildren, etc. (i.e. in the example, R1’s tuple would be
h2, 2, 0i, and the tuple of any leaf node is h0i). Given such a tuple, under the uniformity
assumption, the expected payment to a node is

U(X) =
1 +

P
i
xi
2i

n0 ,

where n0 is the number of nodes in the recruited subforest.
Given the set of choices (recruit all children or recruit no children) made by each node,

this function U(X) is a payout function which defines a normal-form game played by all
non-leaf nodes in the original forest.

3.3.2 Game Definition

We demonstrate the definition of the game by example, recreating the “prisoner’s dilemma”
using a 5-node forest under the uniformity assumption.

Consider the forest F shown in Figure S3. There are two players, R1 and R2, each
of which has the option to recruit a single child or not. If neither recruits, both receive
an expected payment of 1

3 . If one recruits but the other does not, the recruiter has an

expected payment of
1+ 1

2
4 = 3

8 , while the other has an expected payment of 1
4 . If both

recruit, both have an expected payment of
1+ 1

2
5 = 3

10 . This gives a payment matrix
approximated by:

N Y
N .33, .33 .25, .37
Y .37, .25 .3, .3
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Figure S3: The game played by R1 and R2 is equivalent to the “prisoner’s dilemma.”

Clearly, choosing to recruit is a strictly dominant strategy for each player, so the only
Nash equilibrium that both players recruit – even though this is Pareto ine�cient.

3.3.3 Nash Equilibrium of Larger Forests

Consider a game in which all actors have two options: “recruit all” or “recruit none.”
For any given agent a, let all other agents choose “recruit all,” and consider a’s optimal
strategy. If choosing “recruit all” is optimal for a, then no agent can benefit by deviating
from a strategy of “recruit all,” if all other agents choose “recruit all.” This, by definition,
makes the uniform choice to “recruit all” a Nash equilibrium.

Theorem 1. A node a will prefer recruitment to non-recruitment predicated on all other

nodes choosing to recruit if and only if su�ciently many nodes in the forest F are not

descendants of a under the uniformity assumption.

Proof. For a node a in a forest F of size n, let the tuple X = {x1, x2, x3, . . .} be defined
as the number of children, grand-children, great-grand-children, etc. of node a. If F is
finite, each xi is finite and there exists some j such that xi = 0 for all i > j. Let k be the
number of nodes in F that are not descendants of a, noting that k = n �

P
i xi. Since

we assume all nodes other than a choose to recruit, the expected payment received by
a if a chooses to recruit is 1

k . If a does choose to recruit, then a will receive expected

payment
1+

P
i
xi
2i

n =
1+

P
i
xi
2i

k+
P

i xi
. a will find it preferable to recruit if and only if

1+
P

i
xi
2i

k+
P

i xi
> 1

k ,

or, equivalently, when k >
P

i xiP
i
xi
2i
.

Corollary 1. In any forest F of size n for which no tree contains more than
n
3 nodes, all

nodes choosing to recruit is a Nash equilibrium under the uniformity assumption.

Proof. Consider forest F with n nodes, and a node a which has m descendants, taking
a shape described by a tuple X = {x1, x2, x3, . . .}. The expected payment for a for not

recruiting is 1
n�m , and the expected payment for a for recruiting is

1+
P

i
xi
2i

n . Therefore,
we have that a will choose to recruit predicated on all other nodes recruiting if and

8



only if n � m > mP
i
xi
2i
. We note that the definition of X yields that no non-zero value

can follow a zero value (i.e. one must have grand-children in order to have great-grand-
children). It follows that, if we fix m, the setting of X which maximizes mP

i
xi
2i

is X =

{
mz }| {

1, 1, . . . , 1, 0, 0, . . .}, which gives 1
2 

P
i
xi
2i < 1 for m > 0. Thus, a will choose to recruit

if (but not only if) n�m > 2m. This condition holds for all nodes if and only if no tree
in F contains more than n

3 nodes. In this case, all nodes will choose to recruit predicated
on all other nodes recruiting, so all nodes choosing to recruit is a Nash equilibrium.

3.3.4 Selective Recruitment on Fixed-Forest Networks

We now consider the same social graph structure, but allow a node to selectively recruit
any subset of its children.3

Definition 2 (Weight). We define the weight of a node a, Wa, as the sum of the rewards

that would be received by a in the event that each of its descendants were to complete the

task. We note the following properties of Wa

• If a is a leaf, then Wa = 1.

• If a has children c1, c2, . . . with weights Wc1 ,Wc2 , . . ., then Wa = 1 + 1
2

P
i Wci.

• If node a has descendants described by shape X = hx1, x2, . . . , 0i, then Wa = 1 +P
i
xi
2i .

• In a forest with n nodes, the expected payment to node a is U(a) = Wa
n .

Lemma 1. Assuming all other nodes recruit all their children, a node a with children

C = {c1, . . . , cm} recruits a child cx regardless of the shape of Fci of the other children

ci 6= cx, if and only if the weight of cx is large relative to the number of its descendants:
1
2 (m+1)

k+m�1 
1
2Wcx

|cx|

Proof. Let k > 2 be the number of nodes in the forest that are not descendants of a.
The marginal benefit of recruiting a child cx of node a depends on the other children a
recruits. Assuming a recruits a subset of its children S ⇢ (C \ {cx}) and does not recruit
any other children C \ (S [ {cx}), child cx is recruited if and only if

1 + 1
2

P
ci2S Wci

k + (
P

ci2S |ci|)


1 + 1
2

P
ci2S Wci +

1
2Wcx

k + (
P

ci2S |ci|) + |cx|

3We are grateful to Victor Naroditskiy for comments that helped refine the results in this section.

9



This inequality is equivalent to

1 + 1
2

P
ci2S Wci

k + (
P

ci2S |ci|)


1
2Wcx

|cx|

We are looking for a condition that guarantees cx is recruited for any subset of S and
shapes of trees Fci rooted at children other than cx. Thus, we want the left-hand side to
be as high as possible. For k > 2, the left-hand side is maximized when S = C \ {cx} and
each child ci 2 S has no descendants. This worst-case value is

1 + 1
2(m� 1)

k + (m� 1)
=

1
2(m+ 1)

k +m� 1

Corollary 2. Node a recruits all of its children if Lemma 1 holds for each child.

Theorem 2. Assuming all other nodes recruit all their children, a node a recruits all of

its children regardless of the shape of Fa if su�ciently many nodes are not a’s descendants:
k > |a|2

Proof. The condition k > |a|2 is equivalent to 1
|a| >

|a|
k . Since |cx|  |a|, we have 1

|cx| >
|a|
k .

For a � m + 1 (for the case a = m, all children of a have no descendants, and it is easy
to see that they are all recruited if k > 2), we obtain 1

|cx| >
m+1
k . Trivially, Wcx > 1, and

thus Wcx
|cx| > m+1

k > m+1
k+m�1 and by Lemma 1 cx should be recruited.

3.3.5 Recruitment on Graphs

We consider now the case in which the social graph is not a forest, but is instead a
general graph. In this case, the mechanism of recruitment itself plays a non-trivial role,
since it is possible for a node to be recruited by two di↵erent potential parents, and must
choose between them. There is significant literature on di↵usion processes on graphs,
and wide varieties of such processes are seen in practice. We will not investigate the
properties of specific di↵usion mechanisms, but instead we will define a property of a
di↵usion mechanism that guarantees that recruitment is Nash.

Definition 3 (Monotonic Di↵usion). Consider a di↵usion process on a social graph, and

a set of seed nodes R1, R2, . . . , Rn. Let |R1|, |R2|, . . . , |Rn| be the number of nodes whose

recruitment leads back to R1, R2, . . . , Rn, respectively. We call the di↵usion process mono-

tonic if removing a seed node Rx causes the sizes of |R1|, |R2|, . . . , |Rx�1|, |Rx+1|, . . . , |Rn|
to either increase or stay constant (i.e. if Rx does not participate, this does not cause

another seed node to recruit fewer children).
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Monotonicity holds for most “well-behaved” di↵usion processes, but is notably violated
by various “complex contagion” processes in which, for example, a node adopts after
receiving two signals.

Theorem 3. Under the monotonic di↵usion assumption, if each node can recruit less

than
p
k nodes, where k is the number of all recruited nodes that are not descendant of

this node when all nodes recruit, then all nodes recruiting is a Nash equilibrium.

Proof. Consider a node a, which can choose whether or not to recruit, and suppose all
other nodes recruit. Suppose it were the case that if a were to not choose recruitment,
then all nodes that would have been recruited by a would end up un-recruited, instead.
In this case, the graph reduces to the same fixed forest we analyzed previously. Suppose
instead that some of these nodes end up recruited by a di↵erent node. In this case,
not recruiting is strictly less desirable, since the size of the network grows without any
increase in potential payout. Hence, it follows Theorem 2 that recruiting all children is
more desirable in either case under the assumption that a cannot recruit more than

p
k. If

di↵usion is monotonic, the two cases considered are collectively exhaustive, so recruiting
all children is always the more desirable option.

3.4 Summary

The two assumptions above di↵er in their treatment of how the addition of a new mem-
ber to the network a↵ects the probability that each other member succeeds in finding a
balloon. The first assumption is that new members have no e↵ect on existing members,
perhaps because they are searching mutually exclusive areas, and if the new member
were to find a balloon, that implies that no-one would have found that balloon in his
absence. The second assumption is that each member’s probability decreases from 1

n to
1

n+1 , perhaps because all members share the same search space. Unless “network e↵ects”
are present (e.g. working with a new member makes us both more likely to succeed
than working alone), these two assumptions represent best- and worst-case assumptions.
There are certainly intermediate assumptions that could be made, and the strategies that
motivate di↵usion at both extremes will do so for these intermediate assumptions as well.

4 Comparison with Query Incentive Networks

We consider how our scheme relates to Kleinberg and Raghavan pioneering work on
“Query Incentive Networks” (QINs) (21). A QIN is a network of agents which one agent
seeks information which is known to some subset of other agents. This agent broadcasts to
all of his neighbors that he is o↵ering a reward of value r⇤ in exchange for the information.
Assuming that none of his neighbors have the information themselves, each can broadcast
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to its own neighbors that it is o↵ering a lesser reward (e.g. r⇤�1) for the same information.
If it receives the information from any of its neighbors, it pays out r⇤ � 1 and receives
r⇤ from the root node, making a profit of 1 by acting as a conduit for the information.
Kleinberg et al. analyze the properties of these networks, and show that they are an
e�cient method for retrieving uncommon information in a network of agents. QINs are
very similar in spirit to our recursive incentives, and we show how recursive incentives
can be created through a modification to the QIN strategy. In addition, we argue that
recursive incentives e↵ectively solve two issues that would make practical implementation
of a QIN di�cult in a time-critical situation.

When comparing recursive incentives and QINs, two di↵erences are paramount. First,
in a recursive incentive network, upon receipt of the information, the root node directly
pays each node on the path to the agent who supplied the information, while in a QIN,
the root node makes a single payment to one of its neighbors, who then makes a smaller
payment to one of its neighbors, and so on. In the construction of the recursive incentive
network, then, is the implicit assumption that any node can communicate (and transfer
payment) to any other, but that the propagation of queries can only follow a limited
number of links (i.e. the network structure). This assumption is a natural model of real
social networks (especially on-line social networks like Facebook or Twitter) in which it
is possible to explicitly communicate with any user by name, but the default “broadcast”
mechanism only reaches a limited, socially-defined subset of users. A second di↵erence is
that in a QIN, intermediate nodes on the chain to the information supplier receive a fixed
reward, and the node at the end of the chain receives an amount that decreases as its
distance from the root increases. By contrast, in a recursive incentive network, the node
that supplies the information receives a fixed reward, while intermediate nodes receive a
variable reward depending on their distance from the information supplier.

4.1 Making Recursive Incentives out of Query Incentive Net-
works

We borrow terminology from Kleinberg et al. to show how to transform the QIN frame-
work into a recursive incentive. We say that the root node o↵ers a “contract” of value r⇤

for a piece of information, e↵ectively promising “I will pay r⇤ to the first node to provide
me with this information.” Other nodes that do not themselves value the information
o↵er “subcontracts” of value less than r⇤, hoping to receive reward by acting as an in-
termediary. Consider if the root node adds the following to the contract: “In addition
to paying r⇤ for the information, if you obtain this information though subcontracts and
your subcontracts are identical to this contract, I will reimburse you for half of the costs
you pay.” This results in a payment scheme that is identical to a recursive incentive which
pays the final node r⇤, as we will show.

The base case is the situation in which a neighbor (n1) of the root has the information.
The root node pays r⇤ to n1. If n1 does not have the information, but o↵ers the same
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contract to its neighbor (n2), who does have the information, n1 pays r⇤ to n2. The root
then pays r⇤ to n1 for fulfilling the original contract, and an additional r⇤

2 to reimburse
half of the costs paid by n1. Consider the case in which n2 does not have the information,
but o↵ers the same contract to n3, who does. Working from the leaf node up to the root:

• n2 pays r⇤ to n3 for fulfilling the contract. n3 makes no payments, so receives a net
of r⇤.

• n1 pays r⇤ to n2 for fulfilling the contract, and also pays r⇤

2 to n2, since n3 paid out
r⇤ in expenses. n2 received 3r⇤

2 and paid out r⇤, for a net profit of r⇤

2 .

• The root pays r⇤ to n1 for fulfilling the contract, and also pays 3r⇤

4 to n1, since n1

paid out a total of 3r⇤

2 . n2 received 7r⇤

4 and paid out 3r⇤

2 , for a net profit of r⇤

4 .

Having now explicitly demonstrated how small chains produce the same payouts as
recursive incentives, let us now consider the case where the chain is of length k:

• nk�1 pays r⇤ to nk for fulfilling the contract. nk makes no payments, so receives a
net of r⇤.

• For i between 1 and k � 1, inclusive, define p1 as the total amount paid out by ni.
Note that the net profit of node ni is pi+1 � pi

• To fulfill all aspects of the contract, ni pays
pi+1

2 + r⇤ to ni+1, so pi =
pi+1

2 + r⇤.

• Letting pk�1 = r⇤, pk�i =
r⇤2i�1
2i�1 is the unique solution to this recursive definition of

pi, which leads to node ni making net profit r⇤

2k�i .

4.2 Practical Considerations

Having shown that recursive incentives can be presented as a modification to the concept
of QINs, we argue that the recursive incentive formulation has significant benefits when
implemented in practice. Consider a traditional QIN operating over a real-world on-
line social network like Facebook or Twitter. When a node sees a contract and wants
to o↵er a subcontract, it has two practical di�culties. First, it cannot allow any of its
subcontractors to know about its original (and more valuable) contract, since any would-be
subcontractor who knows about the original would surely prefer to fulfill it instead. Also, it
must distribute the nature of the request and establish payment infrastructure (including
building the trust in the subcontractors that payment will happen). Since it cannot use the
original contract as a reference, it is e↵ectively starting from scratch, which significantly
increases the cost of initiating the subcontract. By contrast, propagation in a recursive
incentive network involves simply passing a link to the original “contract,” allowing the
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root node to bear all the burden of fully explaining the request and establishing payment
infrastructure.

A second real-world issue faced by a QIN (especially in a time-critical situation) oc-
curs when communication between nodes incurs a time delay or is lossy. In a QIN, the
information in its entirety must pass through a series of intermediaries. If any of these
corrupts the information or significantly delays propagation (e.g. goes o✏ine), the in-
formation could potentially not reach the root node in a timely and correct fashion. By
contrast, a recursive incentive network allows the node that has the information to pass
it directly to the root node, bypassing all intermediaries (while still allowing them to be
paid by the root). Again, this assumes “broadcast” communication is limited by social
connection, but that point-to-point communication is possible between any two nodes
in the network – but this assumption underlies the core dynamics of most online social
networks.

5 Quantifying the “MIT” E↵ect

In the paper, we argued that the “MIT brand” did not play a major role in the success of
the MIT team. In particular, we showed that the burst of tweets about the MIT team was
more sustained compared to other strategies, including those based on celebrity following,
which experienced very short-lived bursts. We attributed this qualitative di↵erence to the
MIT incentive mechanism.

To further support this claim, bearing in mind the limited data available, we com-
pared the MIT red balloon team’s tweet count with another MIT-related event, namely
launching a hybrid electrical bicycle4. This event took place in the same month, received
significant mass media attention5, and was the only MIT news exceeding 50 tweets in
December in our Twitter dataset (31). While it is di�cult to conduct a systematic com-
parison, Figure S4 suggests that this event also sustained a short-lived burst even with
major media coverage, while the MIT team achieved sustaining burst with our mechanism.

4See http://senseable.mit.edu/copenhagenwheel/.
5E.g. see http://www.nytimes.com/2009/12/15/science/earth/15bike.html
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(b) Raw

Figure S4: Tweet count over time of MIT red balloon team versus another MIT-related event
during the same month. For easy comparison, we shifted data temporally by matching the day
when the MIT team launched the online campaign with the day when the MIT bike news was
released: (a) Daily Twitter counts for both events (Data are scaled in this figure so that both
peaks have the same value); (b) Raw daily increase in Twitter counts. The vertical blue dash
line indicates the day of the DARPA Challenge competition.

6 Examples of recruitment trees
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(a) Large successful recruitment tree

(b) (c)

Figure S5: (a) A tree with the root is shown in green, and the successful path highlighted in
red. (b) and (c) Two additional networks that did not lead to balloons.
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